淘宝网拥有国内最具商业价值的海量数据。截至当前,每天有超过30亿的店铺、商品浏览记录,10亿在线商品数,上千万的成交、收藏和评价数据。如何从这些数据中挖掘出真正的商业价值,进而帮助淘宝、商家进行企业的数据化运营,帮助消费者进行理性的购物决策,是淘宝数据平台与产品部的使命。 为此,我们进行了一系列数据产品的研发,比如为大家所熟知的量子统计、数据魔方和淘宝指数等。尽管从业务层面来讲,数据产品的研发难度并不高;但在“海量”的限定下,数据产品的计算、存储和检索难度陡然上升。本文将以数据魔方为例,向大家介绍淘宝在海量数据产品技术架构方面的探索。
淘宝海量数据产品技术架构 数据产品的一个最大特点是数据的非实时写入,正因为如此,我们可以认为,在一定的时间段内,整个系统的数据是只读的。这为我们设计缓存奠定了非常重要的基础。
- 图1 淘宝海量数据产品技术架构

- 图2 MyFOX中的数据增长曲线

- 图3 MyFOX的数据查询过程

- 图4 MyFOX节点结构

- 图5 全属性选择器

- 图6 Prom的存储结构

- 图7 Prom查询过程

- 图8 glider的技术架构

- 图9 缓存控制体系
