算法
programmingfool5
这个作者很懒,什么都没留下…
展开
-
为什么xgboost/gbdt在调参时为什么树的深度很少就能达到很高的精度?
链接:https://www.zhihu.com/question/45487317/answer/99153174 来源:知乎这个问题很好,回答的也很好。让我重新以统计学来认知两个重点的集成学习方法: 一句话的解释,来自周志华老师的机器学习教科书( 机器学习-周志华):Boosting主要关注降低偏差,因此Boosting能基于泛化性能相当弱的学习器构建出很强的集成,比如GB...原创 2018-09-04 12:34:28 · 565 阅读 · 0 评论 -
LSTM与GRU
LSTM理解有图示:https://www.jianshu.com/p/9dc9f41f0b29GRU:https://blog.csdn.net/cskywit/article/details/78977834知识点(待理解和补充):https://blog.csdn.net/behboyhiex/article/details/81328510...原创 2018-10-05 15:15:08 · 151 阅读 · 0 评论 -
[刷题] 数组中只出现一次的两个数字
题目:一个整型数组里面除了两个数字之外, 其他数字都出现两次, 找出这两个不相同的数字.思路:如果将两个数字缩减为一个数字只出现一次, 那么可以用异或来做: 将数组的元素依次做异或, 那么由于出现两个数字的异或都抵消掉了, 所以最后得到的结果便是那个只出现一次的数字.如何将两个数字分到不同的组里呢. 我们如果对题目中的数组做异或, 那么肯定至少有一位为1, 因为这两个数字不相同, 异或的结...原创 2018-09-21 20:52:37 · 411 阅读 · 0 评论 -
[刷题]1~n的整数中 1 出现的个数
思路:对于每一位来说, 该位是1的数字的个数.比如对于数字:3141592, 百位为1 时, 有多少1出现?将数字分为两部分: pre = 31415 和 post = 92首先考虑百位之前, 即 31415 xx.当百位数字>1时 ,共有(0000~3141) 3142 * 100个1.当百位数字 <= 1时, (0000~3140) 3141 * 100, 特别注意...原创 2018-09-20 18:42:51 · 616 阅读 · 0 评论 -
[刷题] 动态规划合集
题目:给定一根长度为n的绳子,请把绳子剪成m段(m、n都是整数,n&amp;amp;gt;1并且m&amp;amp;gt;1),每段绳子的长度记为k[0],k[1],…,k[m]。请问k[0]*k[1] * … *k[m]可能的最大乘积是多少?例子:例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。1.定义状态方程:f(n)=max(f(i)×f(n−i)),&amp;amp;nbsp原创 2018-09-26 11:59:04 · 410 阅读 · 0 评论 -
[刷题] n 个色子的点数
题目:把n个骰子扔在地上,所有骰子朝上的一面的点数之和为s.输入n,打印出s的所有可能的值出现的概率.def probability(number,maxValue): if number &lt; 1: return p = [[0 for i in range(maxValue * number + 1)] for i in range(2)] ...原创 2018-09-25 16:48:50 · 328 阅读 · 0 评论 -
[刷题] 滑动窗口的最大值
题目:给定一个数组和滑动窗口的大小,找出所有滑动窗口里数值的最大值。例如,如果输入数组{2,3,4,2,6,2,5,1}及滑动窗口的大小3,那么一共存在6个滑动窗口,他们的最大值分别为{4,4,6,6,6,5}; 针对数组{2,3,4,2,6,2,5,1}的滑动窗口有以下6个: {[2,3,4],2,6,2,5,1}, {2,[3,4,2],6,2,5,1}, {2,3,[4,2,6],2,5...原创 2018-09-25 14:05:44 · 97 阅读 · 0 评论 -
[刷题] 输出所有和为S的连续正数序列
题目:输出所有和为S的连续正数序列。序列内按照从小至大的顺序,序列间按照开始数字从小到大的顺序def continuous(sum_): small, big = 1, 2 mid = (sum_+1) // 2 cursum = 0 ans = [] cur = big + small while small < mid: if cursum == sum_: ...原创 2018-09-25 12:31:04 · 318 阅读 · 0 评论 -
L1 & L2 正则化的理解
主要结合花书对于L1 &amp; L2的简单介绍,其中知乎的两个答案对书中的介绍做了很好的补充。 具体的: https://zhuanlan.zhihu.com/p/32488420 上述文章中,主要介绍L2的作用以及原理,更重要的是结合了线性回归(即岭回归)进行介绍。其中第三部分从主成分分析方面,用公式推导出了正则化参数对于不同方差下的特征的影响。第四部分从偏置(bias)-方差(var...原创 2018-09-10 17:03:11 · 239 阅读 · 0 评论 -
SSP-Net 论文笔记
这篇文章的主要解决的是当输入的图片的尺寸不是既定的224×224224×224224 \times 224, 采用各种对图片放缩的时候会影响网络的学习. 比如下图, 只裁剪了一部分, 或者放缩的时候发生了几何的形变: 那么为什么会要求输入的大小相同呢, 很大一个原因就是最高层的FC的输入的尺寸必须要相同. 文章就是从这里下手的.Spatial pyramid pooling: 指的是对于...原创 2018-09-12 20:13:41 · 3630 阅读 · 2 评论 -
过拟合的处理方法总结
1. L1&amp;L2参数正则化基本的思想是对参数进行约束,在保证取得最小的损失函数的同时衰减不相关特征的参数。具体可以看另外一篇博文:L1 &amp; L2 正则化的理解 2. Dropout集成思想,同时减少每层的神经节点之间的相互依赖。3. 数据增强原始的思想是扩充数据集,增强泛化能力。裁剪/翻转/颜色亮度变化。4. 迁移学习当你的数据集比较小,训...原创 2018-09-12 13:42:17 · 388 阅读 · 0 评论 -
R-CNN 阅读笔记
在阅读过程中,找了不少相关的资料来弄清楚比较细节的东西,其中hjimce的博客中,对于细节的理解要更全面一些,比如文中没有具体阐述的非极大值抑算法、对于fine-tuning 、训练CNN和SVM的时候标签的定义和设计的思考,非常欣慰的是在没有相关基础的前提下,我的理解跟这位大牛的理解基本一致。在这里我不做具体的内容总结了,只希望记录下我认为比较重点和难理解的地方,值得以后参考大神的博客和论文...原创 2018-09-11 21:53:11 · 149 阅读 · 0 评论 -
深度机器学习中的batch的大小对学习效果有何影响?
batch_size设的大一些,收敛得快,也就是需要训练的次数少,准确率上升得也很稳定,但是实际使用起来精度不高。需要加大epoch数,同时将学习率增大。batch_size设的小一些,收敛得慢,而且可能准确率来回震荡,所以还要把基础学习速率降低一些;但是实际使用起来精度较高。...原创 2018-09-08 16:19:00 · 2395 阅读 · 0 评论 -
[刷题] MergeSort
题目1️⃣:数组中的逆序对数.思路:利用归并排序的思想.首先将数组分为两两组合, 再对两两组合排序, 排序的过程中记录是不是逆序对数.然后再对这些组合排序, 在排序的过程中, 再对左右两边的子串进行逆序的计数.然后再对这些组合排序, 在排序的过程中, 再对左右两边的子串进行逆序的计数.采用递归, 终止条件肯定是字符串的字数小于2.每次对字符串分两组递归. 计数的条件是当前面的数...原创 2018-10-06 21:06:57 · 161 阅读 · 0 评论