Floyd算法
0 1 2 3 4 5
0 0 1 ∞ ∞ 5 4
1 1 0 8 ∞ ∞ 1
2 ∞ 8 0 1 ∞ 3
3 ∞ ∞ 1 0 3 5
4 5 ∞ ∞ 3 0 2
5 4 1 3 5 2 0
Floyd算法过程描述如下:
1、 首先S以边集M初始化,得到所有的直接连通代价;
2、 依次考虑第k个结点,对于S中的每一个S[i][j],判断是否满足:
S[i][j]>S[i][k]+S[k][j],如果满足则用S[i][k]+S[k][j]代替S[i][j],此为第k步;
3、 k循环取遍所有结点,算法结束时,S为最终解。
#include <stdio.h>
#include <stdlib.h>
main()
{int i,j,k,temp,number,a[6][6],d[6][6],r[6][6];
k=0;number=0;
for(i=0;i<6;i++)
for(j=0;j<6;j++)
{printf("a[%d][%d]=",i,j);
scanf("%d",&temp);
a[i][j]=temp;
}
for(i=0;i<6;i++)
for(j=0;j<6;j++)
{printf("a[%d][%d]=%d ",i,j,a[i][j]);
if(j==6-1) printf("/n");
}
for(i=0;i<6;i++)
for(j=0;j<6;j++)
{
d[i][j]=a[i][j];
r[i][j]=a[i][j];
}
while(number<6)
{
for(i=0;i<6;i++)
for(j=0;j<6;j++)
for(k=0;k<6;k++)
if(d[i][k]+d[k][j]<d[i][j])
{
d[i][j]=d[i][k]+d[k][j];
r[i][j]=d[i][j];
}
number=number+1;
}
for(i=0;i<6;i++)
for(j=i+1;j<6;j++)
printf("r[%d][%d]=%d/n ",i,j,r[i][j]);
getch();
}
r[0][1]=1
r[0][2]=5
r[0][3]=6
r[0][4]=4
r[0][5]=2
r[1][2]=4
r[1][3]=5
r[1][4]=3
r[1][5]=1
r[2][3]=1
r[2][4]=4
r[2][5]=3
r[3][4]=3
r[3][5]=4
r[4][5]=2
1 经典Dijkstra算法的主要思想
算法介绍
Dijkstra算法是由荷兰计算机科学家艾兹格·迪科斯彻发现的。算法解决的是有向图中最短路径问题。
举例来说,如果图中的顶点表示城市,而边上的权重表示著城市间开车行经的距离。 Dijkstra算法可以用来找到两个城市之间的最短路径。
Dijkstra算法的输入包含了一个有权重的有向图G,以及G中的一个来源顶点S。 我们以V表示G中所有顶点的集合。 每一个图中的边,都是两个顶点所形成的有序元素对。(u,v)表示从顶点u到v有路径相连。 我们以E所有边的集合,而边的权重则由权重函数w: E → [0, ∞]定义。 因此,w(u,v)就是从顶点u到顶点v的非负花费值(cost)。 边的花费可以想像成两个顶点之间的距离。任两点间路径的花费值,就是该路径上所有边的花费值总和。 已知有V中有顶点s及t,Dijkstra算法可以找到s到t的最低花费路径(i.e. 最短路径)。 这个算法也可以在一个图中,找到从一个顶点s到任何其他顶点的最短路径。
算法描述
这个算法是通过为每个顶点v保留目前为止所找到的从s到v的最短路径来工作的。初始时,源点s的路径长度值被赋为0(d[s]=0), 同时把所有其他顶点的路径长度设为无穷大,即表示我们不知道任何通向这些顶点的路径(对于V中所有顶点v除s外d[v]= ∞)。当算法结束时,d[v]中储存的便是从s到v的最短路径,或者如果路径不存在的话是无穷大。 Dijstra算法的基础操作是边的拓展:如果存在一条从u到v的边,那么从s到u的最短路径可以通过将边(u,v)添加到尾部来拓展一条从s到v的路径。这条路径的长度是d+w(u,v)。如果这个值比目前已知的d[v]的值要小,我们可以用新值来替代当前d[v]中的值。拓展边的操作一直执行到所有的d[v]都代表从s到v最短路径的花费。这个算法经过组织因而当d达到它最终的值的时候没条边(u,v)都只被拓展一次。
算法维护两个顶点集S和Q。集合S保留了我们已知的所有d[v]的值已经是最短路径的值顶点,而集合Q则保留其他所有顶点。集合S初始状态为空,而后每一步都有一个顶点从Q移动到S。这个被选择的顶点是Q中拥有最小的d值的顶点。当一个顶点u从Q中转移到了S中,算法对每条外接边(u,v)进行拓展。