最短路径算法

 

 

 

Floyd算法

          0        1         2        3        4        5

 

0        0        1                     5        4

1        1        0         8                    1

2              8         0        1              3

3                     1        0        3        5 

 

4       5                      3        0        2

 

5       4         1        3         5        2        0

Floyd算法过程描述如下:
  1、 首先S以边集M初始化,得到所有的直接连通代价;
  2、 依次考虑第k个结点,对于S中的每一个S[i][j],判断是否满足:
  S[i][j]>S[i][k]+S[k][j],如果满足则用S[i][k]+S[k][j]代替S[i][j],此为第k步;
  3、 k循环取遍所有结点,算法结束时,S为最终解。

#include <stdio.h>

#include <stdlib.h>

main()

{int i,j,k,temp,number,a[6][6],d[6][6],r[6][6];

 k=0;number=0;

 for(i=0;i<6;i++)

    for(j=0;j<6;j++)

      {printf("a[%d][%d]=",i,j);

       scanf("%d",&temp);

       a[i][j]=temp;

       }

 for(i=0;i<6;i++)

    for(j=0;j<6;j++)

    {printf("a[%d][%d]=%d   ",i,j,a[i][j]);

     if(j==6-1) printf("/n");

     }

for(i=0;i<6;i++)

    for(j=0;j<6;j++)

      {

       d[i][j]=a[i][j];

       r[i][j]=a[i][j];

       }

while(number<6)

{

 for(i=0;i<6;i++)

  for(j=0;j<6;j++)

    for(k=0;k<6;k++)

     if(d[i][k]+d[k][j]<d[i][j])

     {

      d[i][j]=d[i][k]+d[k][j];

      r[i][j]=d[i][j];

     }

 number=number+1;

 }

for(i=0;i<6;i++)

   for(j=i+1;j<6;j++)

    printf("r[%d][%d]=%d/n ",i,j,r[i][j]);

 getch();

}

 

r[0][1]=1

r[0][2]=5

r[0][3]=6

r[0][4]=4

r[0][5]=2

r[1][2]=4

r[1][3]=5

r[1][4]=3

r[1][5]=1

r[2][3]=1

r[2][4]=4

r[2][5]=3

r[3][4]=3

r[3][5]=4

r[4][5]=2

 

 

 

 

 

 

1 经典Dijkstra算法的主要思想

  算法介绍
Dijkstra算法是由荷兰计算机科学家艾兹格·迪科斯彻发现的。算法解决的是有向图中最短路径问题。

举例来说,如果图中的顶点表示城市,而边上的权重表示著城市间开车行经的距离。 Dijkstra算法可以用来找到两个城市之间的最短路径。

Dijkstra算法的输入包含了一个有权重的有向图G,以及G中的一个来源顶点S。 我们以V表示G中所有顶点的集合。 每一个图中的边,都是两个顶点所形成的有序元素对。(u,v)表示从顶点u到v有路径相连。 我们以E所有边的集合,而边的权重则由权重函数w: E → [0, ∞]定义。 因此,w(u,v)就是从顶点u到顶点v的非负花费值(cost)。 边的花费可以想像成两个顶点之间的距离。任两点间路径的花费值,就是该路径上所有边的花费值总和。 已知有V中有顶点s及t,Dijkstra算法可以找到s到t的最低花费路径(i.e. 最短路径)。 这个算法也可以在一个图中,找到从一个顶点s到任何其他顶点的最短路径。

算法描述
这个算法是通过为每个顶点v保留目前为止所找到的从s到v的最短路径来工作的。初始时,源点s的路径长度值被赋为0(d[s]=0), 同时把所有其他顶点的路径长度设为无穷大,即表示我们不知道任何通向这些顶点的路径(对于V中所有顶点v除s外d[v]= ∞)。当算法结束时,d[v]中储存的便是从s到v的最短路径,或者如果路径不存在的话是无穷大。 Dijstra算法的基础操作是边的拓展:如果存在一条从u到v的边,那么从s到u的最短路径可以通过将边(u,v)添加到尾部来拓展一条从s到v的路径。这条路径的长度是d+w(u,v)。如果这个值比目前已知的d[v]的值要小,我们可以用新值来替代当前d[v]中的值。拓展边的操作一直执行到所有的d[v]都代表从s到v最短路径的花费。这个算法经过组织因而当d达到它最终的值的时候没条边(u,v)都只被拓展一次。

算法维护两个顶点集S和Q。集合S保留了我们已知的所有d[v]的值已经是最短路径的值顶点,而集合Q则保留其他所有顶点。集合S初始状态为空,而后每一步都有一个顶点从Q移动到S。这个被选择的顶点是Q中拥有最小的d值的顶点。当一个顶点u从Q中转移到了S中,算法对每条外接边(u,v)进行拓展。  

  

#include "stdio.h"
struct vertex
{
 int name;
 int tag;
 };
 
main()
{
 int i,j,k,t,kt,temp,tag_number,min;
 struct vertex s[6];
 int dist[6],a[6][6],path[6][6];
 for(i=0;i<6;i++)
   for(j=0;j<6;j++)
   {
    printf("a[%d][%d]=",i,j);
    scanf("%d",&a[i][j]);
    }
 
 for(i=0;i<6;i++)
   dist[i]=a[0][i];
 
 for(i=0;i<6;i++)
   for(j=0;j<6;j++)
      path[i][j]=-1;
 
 for(i=0;i<6;i++)
   {
    s[i].name=i;
    s[i].tag=0;
    }
 
 s[0].tag=1;
 path[0][0]=0;
 tag_number=1;
 
 while(tag_number<6)
   {
    for(i=0;i<6;i++)
     {
      if(s[i].tag==0)
       {
        for(j=0;j<6;j++)
          if((s[j].tag==1)&&(dist[j]+a[j][i]<dist[i]))
         dist[i]=dist[j]+a[j][i];
        }
     }
    min=100;
    for(k=0;k<6;k++)
     {
      if((s[k].tag==0)&&(dist[k]<min))
      {
       min=dist[k];
       t=k;
       }
     }
 
   dist[t]=min;
   s[t].tag=1;
   printf("The vertex %d has been selected!/n",t);
   k=t;
   temp=0;
   for(i=0;i<6;i++)
       if((s[i].tag==1)&&(i!=k)&&(dist[k]==dist[i]+a[i][k]))
       {
        while(path[i][temp]!=-1)
        temp++;
        kt=j=0;
         for(kt=0;kt<temp;kt++)
         {
          path[k][kt]=path[i][j];
          j++;
         }
        path[k][kt]=k;
       }
   tag_number++;
 
   }
 
 for(i=0;i<6;i++)
    printf("dist[%d]=%d/n",i,dist[i]);
 
 for(i=0;i<6;i++)
   for(j=0;j<6;j++)
    if(path[i][j]!=-1)
      printf("path[%d][%d]=%d ",i,j,path[i][j]);
    else
      printf("/n");
 
 getch();
 
}
 
dist[0]=0
dist[1]=1
dist[2]=3
dist[3]=4
dist[4]=6
dist[5]=2
path[0][0]=0 
path[1][0]=0 path[1][1]=1 
path[2][0]=0 path[2][1]=1 path[2][2]=2 
path[3][0]=0 path[3][1]=1 path[3][2]=2 path[3][3]=3 
path[4][0]=0 path[4][1]=1 path[4][2]=5 path[4][3]=4 
path[5][0]=0 path[5][1]=1 path[5][2]=5
 
 


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值