ML
proplume
怕什么真理无穷,进一寸有一寸的欢喜。
展开
-
机器学习--随机森林 (Random Forest)
探索的终点将是开始时的起点。 –艾略特文章内容目录:一、随机森林算法简介 随机森林算法背景随机森林算法思想随机森林算法的特点随机森林算法的应用二、随机森林的相关知识 信息、熵以及信息增益的概念决策树集成学习三、随机森林Python实现四、参考内容一、随机森林的那些事儿~1、背景 Leo Breiman和Adele Cutler发展出推论原创 2018-01-07 12:08:32 · 4102 阅读 · 0 评论 -
机器学习--Logistic Regression(scikit-learn_ 预测疝气病症病马死亡率问题)
据说,心情不好的时候,整理东西可以让好心情回归,那么同理,懒散得想要沉沦时候,总结知识可以召回学习的神龙。学习回顾:认识sklearn:scikit-learn,Python库之一,Scipy(Scientific Python,Python科学计算)工具集的一部分,该库整合了多种机器学习算法,因此可用scikit-learn库实现机器学习,可用来预测模型的创建和验证。sciki原创 2017-12-03 21:21:00 · 2005 阅读 · 2 评论 -
机器学习--基础内容小结
一、创建一个机器模型例子 input:from sklearn.linear_model import LinearRegressionmodel = LinearRegression() print(model)output:LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)二、模型提供的接原创 2018-02-25 15:54:10 · 326 阅读 · 0 评论 -
机器学习--交叉验证函数
一、交叉验证在建立分类模型时,交叉验证(Cross Validation)简称为CV,CV是用来验证分类器的性能。它的主体思想是将原始数据进行分组,一部分作为训练集,一部分作为验证集。利用训练集训练出模型,利用验证集来测试模型,以评估分类模型的性能。二、交叉验证的作用验证分类器的性能用于模型的选择三、交叉验证常用的几种方法3.1 k折交叉验证 K-fold Cross Validation(原创 2018-02-25 16:47:56 · 4362 阅读 · 0 评论