八皇后问题

本文介绍了两种解决八皇后问题的方法:一种复杂度为O(n²),另一种为O(n)。第一种方法通过递归搜索所有可能的皇后放置位置,并检查每一步是否违反规则;第二种方法采用状态数组记录已放置皇后的占据情况,提高效率。
摘要由CSDN通过智能技术生成

八皇后问题(回溯法)

不考虑棋盘对称,共有92种方法

 

方法一:O(n2

 

#include<stdio.h>

#include<iostream>

using namespace std;

int tot = 0,n = 8;

int C[8];

void search(int cur);

int main()

{

       search(0);

       cout<<tot;   

      

}

 

void search(int cur) {

       if(cur== n) 

              tot++;

       else

              for(inti = 0;i < n;i++) {

                     intok = 1;

                     C[cur]= i;

                     for(intj = 0;j < cur;j++)

                            if(C[cur]== C[j] || cur - C[cur] == j - C[j]

                            ||cur + C[cur] == j + C[j])

                            {

                                   ok= 0;

                                   break;

                            }

                     if(ok)search(cur + 1);

              }

}

 

 

注意:cur-C[cur] == j –C[j] || cur+ C[cur] == j + C[j]

用来判断(cur,C[cur])和(j,C[j])是否在同一条直线上

 

 

 

方法二:O(n)

#include<iostream>

using namespace std;

int vis[3][20];

int tot = 0,n = 8;

int C[8];

void search(int cur);

int main()

{

       search(0);

       cout<<tot;

      

}

 

void search(int cur) {

       if(cur== n)

              tot++;

       else

              for(inti = 0;i < n;i++) {

                     if(!vis[0][i]&& !vis[1][cur+i] && !vis[2][cur-i+n]) {

                            C[cur]= i;

                            vis[0][i]= vis[1][cur + i] = vis[2][cur - i + n] = 1;

                            search(cur+1);

                            vis[0][i]= vis[1][cur + i] = vis[2][cur - i + n] = 0;

                           

                     }

              }     

}

 

 

利用vis数组作为一个状态数组,表示已经放置的皇后占据了哪些列,主对角线和副对角线(所以vis数组有3行)

 

注意:一般若在回溯法中使用全局变量,则在一定的时候要将其状态复原,谨记!!!

       一般来说可以避免使用全局变量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值