网易编程题 操作序列

[编程题] 操作序列

时间限制:2

空间限制:32768K

小易有一个长度为n的整数序列,a_1,...,a_n。然后考虑在一个空序列b上进行n次以下操作:
1
、将a_i放入b序列的末尾
2
、逆置b序列
小易需要你计算输出操作n次之后的b序列。 

输入描述:

输入包括两行,第一行包括一个整数n(2 ≤ n ≤ 2*10^5),即序列的长度。

第二行包括n个整数a_i(1 ≤ a_i ≤ 10^9),即序列a中的每个整数,以空格分割。

 

输出描述:

在一行中输出操作n次之后的b序列,以空格分割,行末无空格。

 

输入例子1:

4

1 2 3 4

 

输出例子1:

4 2 1 3

思路:

1.可以按照要求的那样,先把a.i放到末尾,再每次都逆置,但是那样太耗时。

2.我们可以这样看b队列:

a.1先放置中间位置,

然后a.2放在a.1的左边,a.3放在a.1的右边,

接着a.4放在a.1的左边,a.5放在a.1的右边,

.....

这样在a.1左右交替摆放,最终得到一个序列c,

那么c和b什么关系呢,不是相等就是逆置的关系,

如果n为偶数,则a.n在c的第一个位置,也应该在b的第一个位置,即c=b

如果n为偶数,则a.n在c的末尾位置,但在b的第一个位置,即c逆置就可得到b。

当然也可以根据a的长度,来决定a.2先放a.1左边还是右边。

#include <iostream>
#include <string.h>
using namespace std;

int main(){
    int len;
    cin >> len;
    int A[len];
    int B[len];
    int i, j, k, mid;
    for(i=0; i<len; i++){
        cin >> A[i];
    }
    j=len%2; k=0; mid=len/2;
    if(j==0){
    	for(i=0; i<len; i++){
			if(i%2==1) B[mid - (i+1)/2] = A[i];
			else B[mid + (i+1)/2] = A[i];
    	}
    }
    else{
		for(i=0; i<len; i++){
			if(i%2==0) B[mid - (i+1)/2] = A[i];
			else B[mid + (i+1)/2] = A[i];
		}
    }

    for(i=0; i<len; i++){
        cout << B[i];
        if(i<len-1) cout << " ";
    }
    cout << endl;
	return 0;
}
由于a.i是放置在末尾,然后倒置,则到最后一个a.n也是放在末尾,然后倒置b队列,

则a.n肯定在b队列的第一个位置;

同时由于上面思路,a.i是围绕a.1左右左右左右交替摆放的,则a.1的左边肯定是以公差为2递增的,右边也是;

即:

a.n-2在队列b的第2个位置.........

a.n-4在队列b的第3个位置.........

......

a.1 / a.0 在队列b的第x个位置.........(x是队列b的中间位置)(至于是a.1还是a.0,则根据n的值,n如果是偶数则是a.0,否则是a.1

a.1 / a.0 在队列b的第x+1个位置.........(至于是a.1还是a.0,则根据n的值,n如果是偶数则是a.1,否则是a.0

a.n-1在队列b的第n个位置.........

#include <iostream>
#include <string.h>
using namespace std;

int main(){
    int len;
    cin >> len;
    int A[len];
    int B[len];
    int i, j, mid;
    bool add;
    for(i=0; i<len; i++){
        cin >> A[i];
    }
    add = false;
    for(i=0, j=len-1; i<len; i++){
		B[i] = A[j];
    	if(!add){
    		if(j==0){
		    	add=true; j=1; continue;
		    }
		    else if(j==1){
    			add=true; j=0; continue;
    		}
	    }
    	if(!add) j=j-2;
    	else j=j+2;
    }
    
    for(i=0; i<len; i++){
        cout << B[i];
        if(i<len-1) cout << " ";
    }
    cout << endl;
	return 0;
}


#include <iostream>
#include <string.h>
using namespace std;

int main(){
    int len;
    cin >> len;
    int A[len];
    int B[len];
    int i, j;
    for(i=0; i<len; i++){
        cin >> A[i];
    }
    j=0;
    for(i=len-1; i>=0; i=i-2){
        B[j++] = A[i];
    }
    for(i= (i%2==0) ? 1 : 0; i<=len; i=i+2){
        B[j++] = A[i];
    }
    for(i=0; i<len; i++){
        cout << B[i];
        if(i<len-1) cout << " ";
    }
    cout << endl;
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值