[编程题] 操作序列
时间限制:2秒
空间限制:32768K
小易有一个长度为n的整数序列,a_1,...,a_n。然后考虑在一个空序列b上进行n次以下操作:
1、将a_i放入b序列的末尾
2、逆置b序列
小易需要你计算输出操作n次之后的b序列。
输入描述:
输入包括两行,第一行包括一个整数n(2 ≤ n ≤ 2*10^5),即序列的长度。
第二行包括n个整数a_i(1 ≤ a_i ≤ 10^9),即序列a中的每个整数,以空格分割。
输出描述:
在一行中输出操作n次之后的b序列,以空格分割,行末无空格。
输入例子1:
4
1 2 3 4
输出例子1:
4 2 1 3
思路:
1.可以按照要求的那样,先把a.i放到末尾,再每次都逆置,但是那样太耗时。
2.我们可以这样看b队列:
a.1先放置中间位置,
然后a.2放在a.1的左边,a.3放在a.1的右边,
接着a.4放在a.1的左边,a.5放在a.1的右边,
.....
这样在a.1左右交替摆放,最终得到一个序列c,
那么c和b什么关系呢,不是相等就是逆置的关系,
如果n为偶数,则a.n在c的第一个位置,也应该在b的第一个位置,即c=b
如果n为偶数,则a.n在c的末尾位置,但在b的第一个位置,即c逆置就可得到b。
当然也可以根据a的长度,来决定a.2先放a.1左边还是右边。
#include <iostream>
#include <string.h>
using namespace std;
int main(){
int len;
cin >> len;
int A[len];
int B[len];
int i, j, k, mid;
for(i=0; i<len; i++){
cin >> A[i];
}
j=len%2; k=0; mid=len/2;
if(j==0){
for(i=0; i<len; i++){
if(i%2==1) B[mid - (i+1)/2] = A[i];
else B[mid + (i+1)/2] = A[i];
}
}
else{
for(i=0; i<len; i++){
if(i%2==0) B[mid - (i+1)/2] = A[i];
else B[mid + (i+1)/2] = A[i];
}
}
for(i=0; i<len; i++){
cout << B[i];
if(i<len-1) cout << " ";
}
cout << endl;
return 0;
}
由于a.i是放置在末尾,然后倒置,则到最后一个a.n也是放在末尾,然后倒置b队列,
则a.n肯定在b队列的第一个位置;
同时由于上面思路,a.i是围绕a.1左右左右左右交替摆放的,则a.1的左边肯定是以公差为2递增的,右边也是;
即:
a.n-2在队列b的第2个位置.........
a.n-4在队列b的第3个位置.........
......
a.1 / a.0 在队列b的第x个位置.........(x是队列b的中间位置)(至于是a.1还是a.0,则根据n的值,n如果是偶数则是a.0,否则是a.1)
a.1 / a.0 在队列b的第x+1个位置.........(至于是a.1还是a.0,则根据n的值,n如果是偶数则是a.1,否则是a.0)
a.n-1在队列b的第n个位置.........
#include <iostream>
#include <string.h>
using namespace std;
int main(){
int len;
cin >> len;
int A[len];
int B[len];
int i, j, mid;
bool add;
for(i=0; i<len; i++){
cin >> A[i];
}
add = false;
for(i=0, j=len-1; i<len; i++){
B[i] = A[j];
if(!add){
if(j==0){
add=true; j=1; continue;
}
else if(j==1){
add=true; j=0; continue;
}
}
if(!add) j=j-2;
else j=j+2;
}
for(i=0; i<len; i++){
cout << B[i];
if(i<len-1) cout << " ";
}
cout << endl;
return 0;
}
#include <iostream>
#include <string.h>
using namespace std;
int main(){
int len;
cin >> len;
int A[len];
int B[len];
int i, j;
for(i=0; i<len; i++){
cin >> A[i];
}
j=0;
for(i=len-1; i>=0; i=i-2){
B[j++] = A[i];
}
for(i= (i%2==0) ? 1 : 0; i<=len; i=i+2){
B[j++] = A[i];
}
for(i=0; i<len; i++){
cout << B[i];
if(i<len-1) cout << " ";
}
cout << endl;
return 0;
}