【数论】分数化简

题目描述

分数化简是数学中经常运用的知识点之一。

编写程序,对于q次询问,每次询问一组分子分母,要求将分子分母化至最简

输入格式

第一行一个整数q

接下来的q行,每行两个整数x和y,分别表示分子和分母

输出格式

q行,每行对应一次询问的答案

样例数据
样例输入1
5
3 1
1 4
5 10
21 14
1331 22
样例输出1
3 1
1 4
1 2
3 2
121 2
数据范围

对于40%的数据,1≤x,y≤10^9,1≤q≤10^5

对于100%的数据,1≤x,y≤10^18   , 1≤q≤10^5

---------------------------------------------------------------------------------------------------------------------------------

思路

这道题的思路很简单,我们找到分母和分子的最大公因数,然后将分母和分子都除以最大公因数,这道题就完成了

不知道怎么求最大公因数看这篇文章:【数论】最大公因数和最小公倍数_ptyz306的博客-CSDN博客

---------------------------------------------------------------------------------------------------------------------------------

代码

#include<bits/stdc++.h>
using namespace std;
int f(long long a,long long b){
	if(b==0){
		return a;
	}
	f(b,a%b);
}
int main(){
	long long q;
	cin>>q;
	for(int i=1;i<=q;i++){
		long long a,b,c;
		cin>>a>>b;
		c=f(a,b);
		a/=c;
		b/=c;
		cout<<a<<" "<<b<<endl;
	}
	return 0;
}//分数化简

这道题还是很简单的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值