数据分析:matplotlib

折线图

例一:
在这里插入图片描述

例二:
在这里插入图片描述
函数详解:

xticks(ticks, [labels], **kwargs)

ticks:数组类型,用于设置X轴刻度间隔
[labels]:数组类型,用于设置每个间隔的显示标签
**kwargs:用于设置标签字体倾斜度和颜色等外观属性。(注:python里的双星号代表这个位置接收任意多个关键字参数

例三:
如果列表a表示10点到12点的每一分钟的气温,如何绘制折线图观察每分钟气温的变化情况?
a= [random.randint(20,35) for i in range(120)]

在这里插入图片描述
问题一: matplotlib默认不支持中文字符,因为默认的英文字体无法显示汉字
解决办法:

  • 通过matplotlib.rc可以修改,具体方法参见源码(windows/linux)
    找到matplotlib.rc的源码,更改字体的默认参数即可。
#一种在坐标轴显示中文的方法,通过改变类内参数
font = {'family': 'MicroSoft Yahei'}
# 下面两行的作用一样,写代码时使用一个就好
matplotlib.rc('font',**font)
matplotlib.rc('font',family='MicroSoft Yahei')
  • 通过matplotlib 下的font_manager可以解决(windows/linux/mac)
# #另一种在坐标轴显示中文的方法,需要在xtick中加参数fontproperties=my_font,其中地址为汉字的类型地址,搜一下自己的计算机里面就好
my_font = font_manager.FontProperties(fname="C:\Windows\Fonts\YuGothL.ttc")

最终结果:

import random
from matplotlib import pylab as plt
import matplotlib
from matplotlib import font_manager

# #一种在坐标轴显示中文的方法,通过改变类内参数
# font = {'family': 'MicroSoft Yahei'}
# matplotlib.rc('font',**font)
# matplotlib.rc('font',family='MicroSoft Yahei')

# #另一种在坐标轴显示中文的方法,需要在xtick中加参数fontproperties=my_font,其中地址为汉字的类型地址,搜一下自己的计算机里面就好
my_font = font_manager.FontProperties(fname="C:\Windows\Fonts\simsun.ttc")


#设置画布大小
fig = plt.figure(figsize=(10,5),dpi=80)

# 这里的x是个迭代器对象,不是一个迭代器,这里可以搜索一下二者概念;另外,[range(5)]与list(range(5))不太一样
x = range(120)

# 设置种子随机数,使每次随机结果一样
random.seed(10)
y = [random.randint(20,35) for i in range(120)]

# 调整x刻度
_xtick_labels = ['10点{}分'.format(i) for i in range(120) if i<60]
_xtick_labels += ['11点{}分'.format(i-60) for i in range(120) if i>60]

# 取步长
plt.xticks(x[::10],_xtick_labels[::10],rotation = 90,fontproperties=my_font)

#添加描述信息
plt.xlabel('时间',fontproperties=my_font)
plt.ylabel('温度',fontproperties=my_font)
plt.title('气温变化情况',fontproperties=my_font)

# 画出并展示图片
plt.plot(x,y)
plt.show()

结果图:
在这里插入图片描述
例四:
假设大家在30岁的时候,根据自己的实际情况,统计出来了从11岁到30岁每年交的女(男)朋友的数量如列表a,请绘制出该数据的折线图,以便分析自己每年交女(男)朋友的数量走势
a = [1,0,1,1,2,4,3,2,3,4,4,5,6,5,4,3,3,1,1,1]
要求:
y轴表示个数
x轴表示岁数,比如11岁,12岁等

from matplotlib import pylab as plt
from matplotlib import font_manager

my_font = font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc')

fig = plt.figure(figsize=(10,5),dpi=80)

x = range(11,31)
y = [1,0,1,1,2,4,3,2,3,4,4,5,6,5,4,3,3,1,1,1]

_xtick = ['{}岁'.format(i) for i in x]
plt.xticks(x,_xtick,rotation=90,fontproperties=my_font)

plt.xlabel('年龄',fontproperties=my_font)
plt.ylabel('交往个数',fontproperties=my_font)

plt.plot(x,y)
# 网格
plt.yticks(range(9))
plt.grid(alpha=0.3)
plt.show()

#结果为:
在这里插入图片描述

例五: 两个折线

from matplotlib import pylab as plt
from matplotlib import font_manager

my_font = font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc')

fig = plt.figure(figsize=(10,5),dpi=80)

x = range(11,31)
y = [1,0,1,1,2,4,3,2,3,4,4,5,6,5,4,3,3,1,1,1]
x_1 = range(11,31)
y_1 = [1,0,3,1,2,4,3,2,3,4,4,5,1,1,1,1,1,1,0,1]

_xtick = ['{}岁'.format(i) for i in x]
plt.xticks(x,_xtick,rotation=90,fontproperties=my_font)

plt.xlabel('年龄',fontproperties=my_font)
plt.ylabel('交往个数',fontproperties=my_font)

# 绘制折线图
plt.plot(x,y,label='自己')
plt.plot(x_1,y_1,label='同桌')

# 网格
plt.yticks(range(9))
plt.grid(alpha=0.3)

#添加图例,注意这里添加的参数为prop,调整位置看源码!
plt.legend(prop = my_font,loc=2)

# 展示
plt.show()

#结果为:
在这里插入图片描述

总体步骤轮廓:

1、先有一个画板,figure
2、其次确定x、y的数据
3、再调整x、y轴刻度:xticks、yticks
4、画出图形并展示:plot、show

需要注意的点:

1、plot函数的头两个参数为两个列表,这里注意一下[range(n)]与list(range(n))的区别。

2、plot
在这里插入图片描述
在这里插入图片描述

3、常用:
在这里插入图片描述

散点图

大体与折线图一样,把plot换成scatter就好。

# 绘制散点图
plt.scatter(x,y,label='自己')
plt.scatter(x_1,y_1,label='同桌')

条形图

大体与折线图一样,把plot换成bar(竖着)就好,barh(横着)。

在这里插入图片描述

竖状条形图:

from matplotlib import pylab as plt
from matplotlib import font_manager

my_font = font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc')

fig = plt.figure(figsize=(10,5),dpi=80)

x = ['aaa','sss','ddd',]
y = [1,2,3]

_x = range(len(x))

plt.xticks(_x,x,rotation=45,fontproperties=my_font)

plt.xlabel('剧名',fontproperties=my_font)
plt.ylabel('票房/亿',fontproperties=my_font)

# 绘制折线图
plt.bar(_x,y,label='2020年')

#添加图例,注意这里添加的参数为prop,调整位置看源码!
plt.legend(prop = my_font,loc=2)

# 展示
plt.show()

#结果为:
在这里插入图片描述

横型条形图:

# 绘制横型条形图
plt.barh(_x,y,label='2020年')

多个条形图对比:

from matplotlib import pylab as plt
from matplotlib import font_manager

my_font = font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc')

fig = plt.figure(figsize=(10,5),dpi=80)

x = ['电影一','电影二','电影三',]
y_15 = [1,2,3]
y_16 = [6,3,6]
y_17 = [4,8,2]

# 设置x刻度距离
x_15 = range(len(x))
x_16 = [i+0.2 for i in x_15]
x_17 = [i+0.2*2 for i in x_15]

# 刻度,距离,标签,旋转角度,字体等
plt.xticks(x_16,x,rotation=45,fontproperties=my_font)

plt.xlabel('剧名',fontproperties=my_font)
plt.ylabel('票房/亿',fontproperties=my_font)

# 绘制条形图,x、y轴,图例,宽度
plt.bar(x_15,y_15,label='2015年',width=0.2)
plt.bar(x_16,y_16,label='2016年',width=0.2)
plt.bar(x_17,y_17,label='2017年',width=0.2)

#添加图例,注意这里添加的参数为prop,调整位置看源码!
plt.legend(prop = my_font,loc=2)

# 展示
plt.show()

#结果为:
在这里插入图片描述

直方图

没有经过统计的数据才可以绘制直方图,否则不可使用hist。

在这里插入图片描述

在这里插入图片描述

from matplotlib import pyplot as plt
from matplotlib import font_manager

my_font = font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc')

a=[131,  98, 125, 131, 124, 139, 131, 117, 128, 108, 135, 138, 131, 102, 107, 114, 119, 128, 121, 142, 127, 130, 124, 101, 110, 116, 117, 110, 128, 128, 115,  99, 136, 126, 134,  95, 138, 117, 111,78, 132, 124, 113, 150, 110, 117,  86,  95, 144, 105, 126, 130,126, 130, 126, 116, 123, 106, 112, 138, 123,  86, 101,  99, 136,123, 117, 119, 105, 137, 123, 128, 125, 104, 109, 134, 125, 127,105, 120, 107, 129, 116, 108, 132, 103, 136, 118, 102, 120, 114,105, 115, 132, 145, 119, 121, 112, 139, 125, 138, 109, 132, 134,156, 106, 117, 127, 144, 139, 139, 119, 140,  83, 110, 102,123,107, 143, 115, 136, 118, 139, 123, 112, 118, 125, 109, 119, 133,112, 114, 122, 109, 106, 123, 116, 131, 127, 115, 118, 112, 135,115, 146, 137, 116, 103, 144,  83, 123, 111, 110, 111, 100, 154,136, 100, 118, 119, 133, 134, 106, 129, 126, 110, 111, 109, 141,120, 117, 106, 149, 122, 122, 110, 118, 127, 121, 114, 125, 126,114, 140, 103, 130, 141, 117, 106, 114, 121, 114, 133, 137,  92,121, 112, 146,  97, 137, 105,  98, 117, 112,  81,  97, 139, 113,134, 106, 144, 110, 137, 137, 111, 104, 117, 100, 111, 101, 110,105, 129, 137, 112, 120, 113, 133, 112,  83,  94, 146, 133, 101,131, 116, 111,  84, 137, 115, 122, 106, 144, 109, 123, 116, 111,111, 133, 150]

plt.figure(figsize=(10,5),dpi=80)

d = 3
num_bins = (max(a)-min(a))//3

plt.hist(a,num_bins)

plt.xticks(range(min(a),max(a)+d,d))
plt.grid()

#结果为:
在这里插入图片描述

常见问题总结

在EXharts、Plotly中有部分实例可以调用

1、一定要先给出“画布”,也就是plt.figure(figsize=(16,8),dpi=80),才可以在该画布上添加图形和其他组件等,如果xticks放在了figure之前,则先会得到一个只有坐标轴的画布,运行show以后才会显示出你需要的画面,因此会出现两个画面,例如:
代码:

from matplotlib import pyplot as plt
from matplotlib import font_manager

my_font = font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc')

interval = [0,5,10,15,20,25,30,35,40,45,60,90]
width = [5,5,5,5,5,5,5,5,5,15,30,60]
quantity = [836,2737,3723,3926,3596,1438,3273,642,824,613,215,47]

_x = [i-0.5 for i in range(13)]
_xtick_labels = interval+[150]
plt.xticks(_x,_xtick_labels)

plt.figure(figsize=(10,5),dpi=80)

plt.bar(range(len(quantity)),quantity,width=1)

plt.grid()
plt.show()

#结果为:
在这里插入图片描述
改后代码:

from matplotlib import pyplot as plt
from matplotlib import font_manager

my_font = font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc')

interval = [0,5,10,15,20,25,30,35,40,45,60,90]
width = [5,5,5,5,5,5,5,5,5,15,30,60]
quantity = [836,2737,3723,3926,3596,1438,3273,642,824,613,215,47]

plt.figure(figsize=(10,5),dpi=80)

_x = [i-0.5 for i in range(13)]
_xtick_labels = interval+[150]
plt.xticks(_x,_xtick_labels)

plt.bar(range(len(quantity)),quantity,width=1)


plt.grid()
plt.show()

#结果为:
在这里插入图片描述

2、 画直方图时,plt.hist(a,num_bins,density=True),参数density是频率直方图,默认为False,为频数直方图。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值