看本书的源动力是什么?
貌似是2013还是哪年,不记得了,在程序员的世界刮起一阵数学风,数学之美啥的,当时也想看看关于数学的书,感觉大学的数学知识似乎还给老师了,可能需要看看初级一点的数学书,搜索了一下书评,就找了这本。
当时随便翻翻,也就放下了,需要学习的东西很多,而时间总是不够。
到了2015年末,找出个周末看了下这本书,对一些部分还是留下了比较深刻的印象,比如:
指数爆炸问题,在编程世界的应用:你能想象一张纸对折30次,就有地球到月球那么高了吗?所以,二分查找,给我们带来的时间复杂度优化,也是多么难以想象。
理解了过去一直知其名不知其意的“数学归纳法”。
一些好玩的数学题的解题思路。
而更多的部分,读过也就忘了。
所以:
读这本书,不能指望,在程序员的世界里,马上带来立竿见影的效果,这本书和《代码大全》不一样。
读这本书,也许能帮助提高我们对于日常工作的数学场景,进行抽象(建模)的能力,也许不能。
读这本书,也许仅仅是好玩,反正我是读了
作者
结城浩,生于1963年,日本资深技术作家和程序员。在编程语言、设计模式、数学、加密技术等领域,编写了很多深受欢迎的入门书。代表作有《数学女孩》系列、《程序员的数学》等。
最近看过几本日本人的书:《图解HTTP》、《图解TCP/IP》,插图众多,易懂,时间投入性价比高。
图书目录
第1章 0的故事——无即是有
本章学习内容
小学一年级的回忆
10 进制计数法
什么是10进制计数法
分解2503
2进制计数法
什么是2进制计数法
分解1100
基数转换
计算机中为什么采用2进制计数法
按位计数法
什么是按位计数法
不使用按位计数法的罗马数字
指数法则
10 的0 次方是什么
10-1 是什么
规则的扩展
对20 进行思考
2-1 是什么
0 所起的作用
0 的作用:占位
0 的作用:统一标准,简化规则
日常生活中的0
人类的极限和构造的发现
重温历史进程
为了超越人类的极限
本章小结
第2章 逻辑——真与假的二元世界
本章学习内容
为何逻辑如此重要
逻辑是消除歧义的工具
致对逻辑持否定意见的读者
乘车费用问题——兼顾完整性和排他性
车费规则
命题及其真假
有没有“遗漏”
有没有“重复”
画一根数轴辅助思考
注意边界值
兼顾完整性和排他性
使用if 语句分解问题
逻辑的基本是两个分支
建立复杂命题
逻辑非——不是A
逻辑与—— A 并且B
逻辑或—— A 或者B
异或—— A 或者B(但不都满足)
相等—— A 和B 等
蕴涵——若A 则 B
囊括所有了吗
德·摩根定律
德·摩根定律是什么
对偶性
卡诺图
二灯游戏
首先借助逻辑表达式进行思考
学习使用卡诺图
三灯游戏
包含未定义的逻辑
带条件的逻辑与(&&)
带条件的逻辑或(||)
三值逻辑中的否定(!)
三值逻辑的德?摩根定律
囊括所有了吗
本章小结
第3章 余数——周期性和分组
本章学习内容
星期数的思考题(1)
思考题(100 天以后是星期几)
思考题答案
运用余数思考
余数的力量——将较大的数字除一次就能分组
星期数的思考题(2)
思考题(10100 天以后是星期几)
提示:可以直接计算吗
思考题答案
发现规律
直观地把握规律
乘方的思考题
思考题
提示:通过试算找出规律
思考题答案
回顾:规律和余数的关系
通过黑白棋通信
思考题
提示
思考题答案
奇偶校验
奇偶校验位将数字分为两个集合
寻找恋人的思考题
思考题( 寻找恋人)
提示:先试算较小的数
思考题答案
回顾
铺设草席的思考题
思考题(在房间里铺设草席)
提示:先计算一下草席数
思考题答案
回顾
一笔画的思考题
思考题(哥尼斯堡七桥问题)
提示:试算一下
提示:考虑简化一下
提示:考虑入口和出口
思考题答案
奇偶校验
本章小结
第4章 数学归纳法——如何征服无穷数列
本章学习内容
高斯求和
思考题(存钱罐里的钱)
思考一下
小高斯的解答
讨论一下小高斯的解答
归纳
数学归纳法—— 如何征服无穷数列
0 以上的整数的断言
高斯的断言
什么是数学归纳法
试着征服无穷数列
用数学归纳法证明高斯的断言
求出奇数的和 —— 数学归纳法实例
奇数的和
通过数学归纳法证明
图形化说明
黑白棋思考题 —— 错误的数学归纳法
思考题(黑白棋子的颜色)
提示:不要为图所惑
思考题答案
编程和数学归纳法
通过循环表示数学归纳法
循环不变式
本章小结
第5章 排列组合——解决计数问题的方法
本章学习内容
计数——与整数的对应关系
何谓计数
注意“遗漏”和“重复”
植树问题——不要忘记0
植树问题思考题
加法法则
加法法则
乘法法则
乘法法则
置换
置换
归纳一下
思考题(扑克牌的摆法)
排列
排列
归纳一下
树形图——能够认清本质吗
组合
组合
归纳一下
置换、排列、组合的关系
思考题练习
重复组合
也要善于运用逻辑
本章小结
第6章 递归——自己定义自己
本章学习内容
汉诺塔
思考题(汉诺塔)
提示:先从小汉诺塔着手
思考题答案
求出解析式
解出汉诺塔的程序
找出递归结构
再谈阶乘
阶乘的递归定义
思考题(和的定义)
递归和归纳
斐波那契数列
思考题(不断繁殖的动物)
斐波那契数列
帕斯卡三角形
什么是帕斯卡三角形
递归定义组合数
组合的数学理论解释
递归图形
以递归形式画树
实际作图
谢尔平斯基三角形
本章小结
第7章 指数爆炸——如何解决复杂问题
本章学习内容
什么是指数爆炸
思考题(折纸问题)
指数爆炸
倍数游戏——指数爆炸引发的难题
程序的设置选项
不能认为是“有限的”就不假思索
二分法查找——利用指数爆炸进行查找
寻找犯人的思考题
提示:先思考人数较少的情况
思考题答案
找出递归结构以及递推公式
二分法查找和指数爆炸
对数——掌握指数爆炸的工具
什么是对数
对数和乘方的关系
以2 为底的对数
以2 为底的对数练习
对数图表
指数法则和对数
对数和计算尺
密码——利用指数爆炸加密
暴力破解法
字长和安全性的关系
如何处理指数爆炸
理解问题空间的大小
四种处理方法
本章小结
第8章 不可解问题——不可解的数、无法编写的程序
本章学习内容
反证法
什么是反证法
质数思考题
反证法的注意事项
可数
什么是可数
可数集合的例子
有没有不可数的集合
对角论证法
所有整数数列的集合是不可数的
所有实数的集合是不可数的
所有函数的集合也是不可数的
不可解问题
什么是不可解问题
存在不可解问题
思考题
停机问题
停机
处理程序的程序
什么是停机问题
停机问题的证明
写给尚未理解的读者
不可解问题有很多
本章小结
第9章 什么是程序员的数学——总结篇
本章学习内容
何为解决问题
认清模式,进行抽象化
由不擅长催生出的智慧
幻想法则
程序员的数学