标题:买不到的数目
小明开了一家糖果店。他别出心裁:把水果糖包成4颗一包和7颗一包的两种。糖果不能拆包卖。
小朋友来买糖的时候,他就用这两种包装来组合。当然有些糖果数目是无法组合出来的,比如要买 10 颗糖。
你可以用计算机测试一下,在这种包装情况下,最大不能买到的数量是17。大于17的任何数字都可以用4和7组合出来。
本题的要求就是在已知两个包装的数量时,求最大不能组合出的数字。
输入:
两个正整数,表示每种包装中糖的颗数(都不多于1000)
要求输出:
一个正整数,表示最大不能买到的糖数
不需要考虑无解的情况
例如:
用户输入:
4 7
程序应该输出:
17
再例如:
用户输入:
3 5
程序应该输出:
7
资源约定:
峰值内存消耗 < 64M
CPU消耗 < 3000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意: main函数需要返回0
注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
注意: 所有依赖的函数必须明确地在源文件中 #include <xxx>, 不能通过工程设置而省略常用头文件。
提交时,注意选择所期望的编译器类型。
题目关键点分析——
比如输入为4和7,那么只要出现至少连续的4个数可以被4和7组合出来,那么后面的数字一定都可以被4和7组合出来。
证明:比如18、19、20、21都是可以被4和7组合出来的,那么后面的数都可以被4和7组合出来,比如22,就相当于18+4,既然18可以被4和7组合出来,那么18+4即22也是可以被组合出来的,后面的数同理。
#include<stdio.h>
#define N 50000
int a[N]; //开一个长为N的数组,用于记录
void scaning(int m, int n) //扫描,看某个数字是否是m和n的某个组合的结果,是的话记为1
{
int i, j;
//为了减少一些无谓的循环,(N/m)*m已经不小于N了,所以N/m之后的数字就不用继续循环了
for(i=0; i<=N/m; i++)
{
//同理,由i*m + j*n < N得,只要j不小于(N-m*i)/n,j*[(N-m*i)/n]就可以达到N了
for(j=0; j<=(N-m*i)/n; j++)
{
if(i*m + j*n < N)
a[i*m + j*n] = 1;
}
}
}
//统计,如果出现连续至少minimum个1,就说明后面的数字都是可以被m、n组合出来的
int counting(int minimum)
{
int i;
int times = 0;
for(i=0; i<N; i++)
{
if(a[i] == 1)
times++;
else
times = 0;
if(times == minimum)
return i - minimum; //返回第一组至少四个连续的1之前的那个数
}
return -1; //如果找不到,就返回-1
}
int main()
{
int m, n;
scanf("%d%d", &m, &n);
scaning(m, n);
printf("%d\n", counting(m < n ? m : n)); //传给counting较小的数
return 0;
}
以上是正常的写法,当然还有不正常的——
using namespace std;
int main()
{
int a,b;
cin>>a>>b;
cout<<a*b-a-b<<endl;
}
就AC了……具体原理请自行查查吧……