蓝桥杯:买不到的数目



标题:买不到的数目


    小明开了一家糖果店。他别出心裁:把水果糖包成4颗一包和7颗一包的两种。糖果不能拆包卖。


    小朋友来买糖的时候,他就用这两种包装来组合。当然有些糖果数目是无法组合出来的,比如要买 10 颗糖。


    你可以用计算机测试一下,在这种包装情况下,最大不能买到的数量是17。大于17的任何数字都可以用4和7组合出来。


    本题的要求就是在已知两个包装的数量时,求最大不能组合出的数字。


输入:
两个正整数,表示每种包装中糖的颗数(都不多于1000)


要求输出:
一个正整数,表示最大不能买到的糖数


不需要考虑无解的情况


例如:
用户输入:
4 7
程序应该输出:
17


再例如:
用户输入:
3 5
程序应该输出:
7






 
资源约定:
峰值内存消耗 < 64M
CPU消耗  < 3000ms




请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。


所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。


注意: main函数需要返回0
注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
注意: 所有依赖的函数必须明确地在源文件中 #include <xxx>, 不能通过工程设置而省略常用头文件。


提交时,注意选择所期望的编译器类型。


题目关键点分析——

比如输入为4和7,那么只要出现至少连续的4个数可以被4和7组合出来,那么后面的数字一定都可以被4和7组合出来。

证明:比如18、19、20、21都是可以被4和7组合出来的,那么后面的数都可以被4和7组合出来,比如22,就相当于18+4,既然18可以被4和7组合出来,那么18+4即22也是可以被组合出来的,后面的数同理。


#include<stdio.h>

#define N 50000

int a[N];                           //开一个长为N的数组,用于记录

void scaning(int m, int n) //扫描,看某个数字是否是m和n的某个组合的结果,是的话记为1
{
    int i, j;

    //为了减少一些无谓的循环,(N/m)*m已经不小于N了,所以N/m之后的数字就不用继续循环了
    for(i=0; i<=N/m; i++)
    {
        //同理,由i*m + j*n < N得,只要j不小于(N-m*i)/n,j*[(N-m*i)/n]就可以达到N了
        for(j=0; j<=(N-m*i)/n; j++)
        {
            if(i*m + j*n < N)
                a[i*m + j*n] = 1;
        }
    }
}

//统计,如果出现连续至少minimum个1,就说明后面的数字都是可以被m、n组合出来的
int counting(int minimum)
{
    int i;
    int times = 0;
    for(i=0; i<N; i++)
    {
        if(a[i] == 1)
            times++;
        else
            times = 0;

        if(times == minimum)
            return i - minimum; //返回第一组至少四个连续的1之前的那个数
    }
    return -1;      //如果找不到,就返回-1
}

int main()
{
    int m, n;
    scanf("%d%d", &m, &n);
    scaning(m, n);
    printf("%d\n", counting(m < n ? m : n));    //传给counting较小的数
    return 0;
}

以上是正常的写法,当然还有不正常的——

using namespace std;  
  
int main()  
{  
      
    int a,b;  
    cin>>a>>b;  
    cout<<a*b-a-b<<endl;  
      
}  

就AC了……具体原理请自行查查吧……


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值