07 深度神经网络 - 神经网络和深度学习 [Deep Learning Specialization系列]

本文是Deep Learning Specialization系列的笔记,深入探讨深度神经网络(DNN)。介绍了DNN的结构、正向传播的计算过程、矩阵计算的注意事项,以及深度学习的优势和参数管理。通过区块化表示,清晰地展示了神经网络的工作原理。
摘要由CSDN通过智能技术生成

本文是Deep Learning Specialization系列课程的第1课《Neural Networks and Deep Learning》中Deep Neural Network部分的学习笔记。

前面学习的内容是1层的逻辑回归和2层的简单神经网络,这节主要是来做一个归纳,以学习深度(L层)神经网络。

1. 深度神经网络

首先,下面这张图介绍的就是我们学习的几种神经网络的类型,本文主要讲述深度神经网络。
不同层数的神经网络

在深度神经网络中,各参数的定义如下:

  • [ l ] ^{[l]} [l]是指神经网络的层数,比如下图中有3个隐藏层和1个输出层,所以 l = 4 l = 4 l=4
  • n [ l ] n^{[l]} n[l]是指第 l l l层网络的节点个数,下图中 n [ 1 ] = 5 n^{[1]} = 5 n[1]=5 n [ 2 ] = 5 n^{[2]} = 5 n[2]=5 n [ 3 ] = 3 n^{[3]} = 3 n[3]=3 n [ 4 ] = 1 n^{[4]} = 1 n[4]=1。其中输入层为 n [ 0 ] = 3 n^{[0]} = 3 n[0]=3
  • w [ l ] w^{[l]} w[l] b [ l ] b^{[l]} b[l]是第 l l l层的 z [ l ] z^{[l]} z[l]函数的参数
  • a [ l ] a^{[l]} a[l]是指第 l l l层网络的激活函数输出, a [ l ] = g [ l ] ( z [ l ] ) a^{[l]} = g^{[l]}(z^{[l]}) a[l]=g[l](z[l]),其中 g g g为第 l l l层应用的损失函数

深度神经网络的参数说明

2. 正向传播

下面先以一个数据集为例进行深度神经网络的正向传播计算。

第一层神经网络:

  • z [ 1 ] = w [ 1 ] x + b [ 1 ] z^{[1]} = w^{[1]} x + b^{[1]} z[1]=w[1]x+b[1]
  • a [ 1 ] = g [ 1 ] ( z [ 1 ] ) a^{[1]} = g^{[1]}(z^{[1]}) a[1]=g[1](z
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值