SPOJ Query on a tree - 树链剖分

题目链接:http://www.spoj.com/problems/QTREE/

题意:给一棵树,单点更新, 询问树上两点间路径上边权最大值。


树链剖分模板题,

学习资料: 

http://wenku.baidu.com/link?url=SGLjpJtYbJ0HxDYlU_GMXE1qCFS0gbmpDGWPxI7mQuNAsJP0y872mNKwpZ8P054g5XMhFGZbMUjZvN5hcnxFFUEfGBj6-tnkpnJvnVSlqGS

参考bin神代码:

http://www.cnblogs.com/kuangbin/p/3253741.html


具体步骤: 来自  http://hzwer.com/category/c/graphtheory/tree-algorithm/tree-chain-partition

树链剖分就是把树拆成一系列链,然后用数据结构对链进行维护。

通常的剖分方法是轻重链剖分,所谓轻重链就是对于节点u的所有子结点v,size[v]最大的v与u的边是重边,其它边是轻边,其中size[v]是以v为根的子树的节点个数,全部由重边组成的路径是重路径,根据论文上的证明,任意一点到根的路径上存在不超过logn条轻边和logn条重路径。

这样我们考虑用数据结构来维护重路径上的查询,轻边直接查询。

通常用来维护的数据结构是线段树,splay较少见。

具体步骤

预处理

第一遍dfs求出树每个结点的深度deep[x],其为根的子树大小size[x],还有所有的重边。

第二遍dfs

ž根节点为起点,向下拓展构建重链

选择最大的一个子树的根继承当前重链

其余节点,都以该节点为起点向下重新拉一条重链

ž给每个结点分配一个位置编号,每条重链就相当于一段区间,用数据结构去维护。

把所有的重链首尾相接,放到同一个数据结构上,然后维护这一个整体即可

修改操作

ž1、单独修改一个点的权值

根据其编号直接在数据结构中修改就行了。

2、修改点u和点v的路径上的权值

(1)若u和v在同一条重链上

直接用数据结构修改idx[u]至idx[v]间的值。

(2)若u和v不在同一条重链上

一边进行修改,一边将u和v往同一条重链上靠,然后就变成了情况(1)。

查询操作

ž查询操作的分析过程同修改操作

题目不同,选用不同的数据结构来维护值,通常有线段树和splay



#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1

const int maxn = 1e4+10;
struct Edge{
    int to, next;
}e[maxn*2];

// 前向星
int cnt, head[maxn];
int n;
int x[maxn], y[maxn], z[maxn];

// 树链剖分
int fa[maxn], dep[maxn], size[maxn];
int son[maxn];  // 重儿子
int top[maxn];  // top[v] 代表v所在的重链的顶端结点
int idx[maxn]; // idx[v] 代表v与其父亲的边在线段树中的标号
int fidx[maxn]; // 与idx相反
int pos;

//线段树
int Max[maxn<<2];

void init()
{
    cnt = 0;
    pos = 0;
    memset(head, -1, sizeof(head));
    memset(son, -1, sizeof(son));
}

void add(int u, int v)
{
    e[cnt].to = v;
    e[cnt].next = head[u];
    head[u] = cnt++;
}

// 第一次dfs, 找出所有重边
void dfs1(int u, int pre, int d)
{
    fa[u] = pre; size[u] = 1; dep[u] = d;
    for(int i=head[u]; i!=-1; i=e[i].next)
    {
        int v = e[i].to;
        if(v == pre) continue;
        dfs1(v, u, d+1);
        size[u] += size[v];
        if(son[u] == -1 || size[v] > size[son[u]]) son[u] = v;
    }
}

// 第二次dfs,连重边成重链,并且给每个结点重新标号(重链构成连续的区间)
void dfs2(int u, int anc)
{
    top[u] = anc;
    if( son[u] != -1)
    {
        idx[u] = pos++;
        fidx[idx[u]] = u;
        dfs2(son[u], anc);
    }
    else
    {
        idx[u] = pos++;
        fidx[idx[u]] = u;
        return;
    }

    for(int i=head[u]; i!=-1; i=e[i].next)
    {
        int v = e[i].to;
        if(v != fa[u] && v!=son[u]) dfs2(v, v);
    }
}

void pushUp(int rt)
{
    Max[rt] = max(Max[rt<<1], Max[rt<<1|1]);
}

void update(int p, int v, int l, int r, int rt)
{
    if(l == r)
    {
        Max[rt] = v;
        return;
    }
    int m = (l + r) >> 1;
    if(p <= m) update(p, v, lson);
    else update(p, v, rson);
    pushUp(rt);
}

int query(int L, int R, int l, int r, int rt)
{
    if(L <=l && r <= R) return Max[rt];
    int ret = 0;
    int m = (l + r) >> 1;
    if(L <= m) ret = max(ret, query(L, R, lson));
    if(R > m) ret = max(ret, query(L, R, rson));
    return ret;
}

int solve(int u, int v)
{
    int ret = 0;
    int f1 = top[u], f2 = top[v];
    while( f1 != f2)
    {
        if(dep[f1] < dep[f2])
        {
            swap(f1, f2);
            swap(u, v);
        }
        ret = max(ret, query(idx[f1], idx[u], 0, pos-1, 1));
        u = fa[f1]; f1 = top[u];
    }

    if(u == v) return ret;
    if(dep[u] > dep[v]) swap(u, v);
    return max(ret, query(idx[son[u]], idx[v], 0, pos-1, 1));
}

int main()
{
    int t, a, b;
    char buf[10];
    cin >> t;
    while(t--)
    {
        init();
        scanf("%d", &n);
        for(int i=1;i<=n-1;i++)
        {
            scanf("%d%d%d", &x[i], &y[i], &z[i]);
            add(x[i], y[i]);
            add(y[i], x[i]);
        }
        dfs1(1, -1, 0); dfs2(1, 1);
        memset(Max, 0, sizeof(Max));
//        for(int i=1; i<=n; i++)
//        {
//            printf("son:%d size:%d dep:%d id:%d\n", son[i], size[i], dep[i], idx[i]);
//        }

        for(int i=1; i<n; i++)
        {
            if(dep[x[i]] > dep[y[i]]) swap(x[i], y[i]);
            update(idx[y[i]], z[i], 0, pos-1, 1);
        }

        while( scanf("%s", buf) )
        {
            if(buf[0] == 'D') break;
            scanf("%d%d", &a, &b);
            if(buf[0] == 'Q') printf("%d\n", solve(a, b));
            else update(idx[y[a]], b, 0, pos-1, 1);
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值