Hadoop archive 唯一的优势可能就是将众多的小文件打包成一个har 文件了,那这个文件就会按照dfs.block.size 的大小进行分块,因为hdfs为每个块的元数据大小大约为150个字节,如果众多小文件的存在(什么是小文件内,就是小于dfs.block.size 大小的文件,这样每个文件就是一个block)占用大量的namenode 堆内存空间,打成har 文件可以大大降低namenode 守护节点的内存压力。但对于MapReduce 来说起不到任何作用,因为har文件就相当一个目录,仍然不能讲小文件合并到一个split中去,一个小文件一个split ,任然是低效的,这里要说一点<<hadoop 权威指南 中文版>>对这个翻译有问题,上面说可以分配到一个split中去,但是低效的。
既然有优势自然也有劣势,这里不说它的不足之处,仅介绍如果使用har 并在hadoop中更好的使用har 文件
首先 看下面的命令
hadoop archive -archiveName 20131101.har /user/hadoop/login/201301/01 /user/hadoop/login/201301/01
我用上面的命令就可以将 /user/hadoop/login/201301/01 目录下的文件打包成一个 20131101.har 的归档文件,但是系统不会自动删除源文件,需要手动删除
hadoop fs -rmr /user/hadoop/login/201301/01/*.*.* 我是用正则表达式来删除的,大家根据自己的需求删除原始文件
有人说了,我删了,归档文件存在,源文件不在了,如果要恢复怎么办,这个也困惑了我,hadoop 好像确实也没有提供这样的API 可以 还原成源文件
功夫不负有心人,其实也很简单,直接从har 文件中 cp出来就可以了。
查看har文件:hadoop fs -ls har:user/heipark/20120108_15.har/
hadoop fs -cp har:home/hdp-xxx/backup/reportdata/reportdata-20190320.har/20190320 /home/hdp-360osd/backup/reportdata/reportdata-20190320
那如何在hive 中使用呢,首先看建表 :
CREATE EXTERNAL TABLE login_har(
ldate string,
ltime string,
userid int,
name string)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ' '
STORED AS INPUTFORMAT
'org.apache.hadoop.mapred.TextInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION
'hdfs://h60:9000/user/hadoop/login/201301/01'
这是正常的文件 建外表 从而可以不损害源文件的情况下 在Hive中查看,外边有啥优点不多说。
如果是har 文件呢?
CREATE EXTERNAL TABLE login_har(
ldate string,
ltime string,
userid int,
name string)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ' '
STORED AS INPUTFORMAT
'org.apache.hadoop.mapred.TextInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION
'har:///user/hadoop/login/201301/01/20130101.har'
特别注意:如果是parquet格式等,需要指定
ROW FORMAT SERDE 'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
样例:
CREATE EXTERNAL TABLE tmp_v2(
deviceid String,
aa string,
bb string
)
ROW FORMAT SERDE 'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
STORED AS
INPUTFORMAT 'org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'
LOCATION 'har:///home/xxxx/'
这样就可以实现,但这样不好,为什么不好呢,我只能制定单一的目录,假如我的数据增加了,如何能动态的修改呢?
其实也简单,可以使用分区表的形式:
CREATE EXTERNAL TABLE login_har(
ldate string,
ltime string,
userid int,
name string)
PARTITIONED BY (
ym string,
d string)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ' '
STORED AS INPUTFORMAT
'org.apache.hadoop.mapred.TextInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION
'hdfs://h60:9000/user/hadoop/login'
先对其父目录建表,然后对年月日进行分区PARTITIONED BY 即是进行分区
再手动修改 其动态分区 即可:
alter table login_har add partition(ym='201301',d='01') LOCATION 'har:///flume/loginlog/201301/01/20130101.har';
标注为红色的 实践中证明 只能 支持select * from 不加条件的查询,意思就是如果hive mapreduce的话,那就无法 通过这种方式
alter table login_har add partition(ym='201301',d='01') LOCATION 'hdfs://h60:9000/flume/loginlog/201301/01/20130101.har';
只能通过下面的方式进行。
这样不是很好,既可以对hive 表进行分区索引,也可以动态增加har 文件 到新的分区中。har包不能一旦建成不能修改,我们可以打小包,建目录的方式进行分而治之,既满足需求也不影响效率。
---------------------
作者:Mr-zhou
来源:CSDN
原文:https://blog.csdn.net/zhouleilei/article/details/18414001?utm_source=copy
================================================================================================
har命令说明
- 参数“-p”为src path的前缀
- src可以写多个path
archive -archiveName NAME -p <parent path> <src>* <dest>
生成HAR文件
- 单个src文件夹:
hadoop archive -archiveName 419.har -p /fc/src/20120116/ 419 /user/heipark
- 多个src文件夹
hadoop archive -archiveName combine.har -p /fc/src/20120116/ 419 512 334 /user/heipark
- 不指定src path,直接归档parent path(本例为“ /fc/src/20120116/ ”, “ /user/heipark ”仍然为输出path),这招是从源码里翻出来的,嘿嘿。
hadoop archive -archiveName combine.har -p /fc/src/20120116/ /user/heipark
- 使用模式匹配的src path,下面的示例归档10、11、12月文件夹的数据。这招也是从源码发出来的。
hadoop archive -archiveName combine.har -p /fc/src/2011 1[0-2] /user/heipark
查看HAR文件
hadoop fs -ls har:user/heipark/20120108_15.har/
#输出如下:
drw-r--r-- - hdfs hadoop 0 2012-01-17 16:30 /user/heipark/20120108_15.har/2025
drw-r--r-- - hdfs hadoop 0 2012-01-17 16:30 /user/heipark/20120108_15.har/2029
#使用hdfs文件系统查看har文件
hadoop fs -ls /user/yue.zhang/20120108_15.har/
#输出如下:
-rw-r--r-- 2 hdfs hadoop 0 2012-01-17 16:30 /user/heipark/20120108_15.har/_SUCCESS
-rw-r--r-- 5 hdfs hadoop 2411 2012-01-17 16:30 /user/heipark/20120108_15.har/_index
-rw-r--r-- 5 hdfs hadoop 24 2012-01-17 16:30 /user/heipark/20120108_15.har/_masterindex
-rw-r--r-- 2 hdfs hadoop 191963 2012-01-17 16:30 /user/heipark/20120108_15.har/part-0
Har Java API (HarFileSystem )
Java代码
- public static void main(String[] args) throws Exception {
- Configuration conf = new Configuration();
- conf.set("fs.default.name", "hdfs://xxx.xxx.xxx.xxx:9000");
- HarFileSystem fs = new HarFileSystem();
- fs.initialize(new URI("har:///user/heipark/20120108_15.har"), conf);
- FileStatus[] listStatus = fs.listStatus(new Path("sub_dir"));
- for (FileStatus fileStatus : listStatus) {
- System.out.println(fileStatus.getPath().toString());
- }
- }
代码详细讲解:https://wenku.baidu.com/view/5a6e70efb8f67c1cfad6b888