神经网络中的激活函数、损失函数、优化与正则化技术
1. 激活函数的重要性
在神经网络中,部分激活函数可能会出现偏导数为零的情况。因此,选择一个能使偏导数取较高值,同时将转换后的特征约束在期望小范围内的激活函数至关重要。接下来,我们将介绍几种更优的激活函数。
1.1 Softmax函数
Softmax函数是一种重要的激活函数,特别适用于对数几率(logits)。它作用于一个向量,输出一个所有元素之和为1的向量,将每个元素(代表一个类别)转换为概率,即对向量进行归一化处理。该函数常用于多类别分类任务。
1.2 ReLU函数
早期神经网络研究中,Sigmoid函数常被用作隐藏单元的激活函数,但如今趋势已变。ReLU(Rectified Linear Unit)函数是一种著名的激活函数,其表达式为:
[
ReLU(x) = \max(0, x)
]
ReLU函数对于输入特征 (x) 在范围 ([0, +\infty)) 内表现为线性函数(输出等于输入值),但会将负值截断为零,是隐藏单元的常用选择。不过,ReLU函数在输入为零时不可导,因为其从左侧、右侧趋近于零的极限不存在,这导致ReLU函数在零处不连续。但在软件实现中,为了进行梯度计算,会将ReLU在零处的导数人为设为零,以便网络学习。
ReLU函数的导数为:
[
ReLU’(x) =
\begin{cases}
1, & x > 0 \
0, & x \leq 0
\end{cases}
]
可以看出,对于较
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



