- 博客(1000)
- 资源 (6)
- 收藏
- 关注

原创 Python基于深度学习机器学习卷积神经网络实现垃圾分类垃圾识别系统(GoogLeNet,Resnet,DenseNet,MobileNet,EfficientNet,Shufflent)
链接卷积神经网络由多层组成,其中主要的层类型包括卷积层、池化层和全连接层。每一层都具有特定的功能,共同构建了网络的表达能力。本文带领读者踏上了一段深度学习的垃圾分类之旅。通过利用卷积神经网络(CNN)这一强大工具,我们不仅能够从垃圾图片中提取有关不同类别的特征,还能将图像分类推向一个全新的高度。从数据准备、模型构建,再到训练和评估,我们深入探讨了每一步的细节。在这个过程中,我们了解了CNN的架构、数据预处理的重要性以及模型的构建和训练。
2023-10-19 23:40:54
19853
3

原创 Pytorch深度学习卷积神经网络动物识别动物数据集(Alexnet,GoogLeNet,Resnet,DenseNet,MobileNet,EfficientNet,Shufflent)
基于人工智能的动物AI识别,能够帮助我们快速认知动物品种,对动物科普等研究方面具有重大的意义。本项目将采用深度学习的方法,搭建一个动物分类识别的训练和测试系统。基于该项目,你可以快速训练一个动物分类识别模型。目前,基于ResNet18的动物分类识别,**支持90种动物分类识别;**在Animals90动物数据集上,训练集的Accuracy 99%左右,测试集的Accuracy在91%左右;在Animals10动物数据集上,训练集的Accuracy 99%左右,测试集的Accuracy在96%左右。
2023-10-19 23:24:20
16367
1

原创 2024年基于计算机视觉,深度学习卷积神经网络计算机毕业设计选题
随着深度学习、机器学习和神经网络技术的快速发展,计算机视觉领域的应用变得越来越广泛和有趣。本毕业设计旨在探索这一领域的前沿技术,将深度学习模型、神经网络架构、OpenCV图像处理工具,以及卷积神经网络(CNN)的强大能力结合起来,以解决实际图像处理问题。本设计将为计算机视觉的学术研究和工程应用做出贡献,并为毕业生提供一个深入研究和实践的机会。
2023-09-14 22:17:59
10663
1

原创 基于深度学习、机器学习,对抗生成网络,OpenCV,图像处理,卷积神经网络计算机毕业设计选题指导
深度学习毕业设计题目的选择要注意结合实际应用场景和自身研究方向,同时要结合自身的能力和兴趣进行选择。在设计过程中,还需要不断思考和总结,提高自己的深度学习技术水平,为未来的职业发展打好基础。这些深度学习毕业设计题目代表了深度学习在各种领域中的广泛应用。选择一个与自己兴趣和职业发展目标相关的课题,将会使毕业设计过程更加富有挑战性和有意义。希望本文提供的题目能够激发学生的创造力,并为他们的毕业设计提供有价值的方向。祝愿所有的毕业生成功完成毕业设计!
2023-09-14 21:59:07
9136
原创 综合能源数据微电网数据 电负荷热负荷冷负荷气负荷数据全年热负荷
*克隆项目仓库(如果有的话)**: git clone https://github.com/yourusername/energy_data_analysis.git**安装依赖项**: conda create --name energy_env python=3.8**准备数据集**:**运行主程序**: python main.py#### 操作界面。
2025-04-07 19:31:17
333
原创 结合TCN、通道注意力机制( CAM)和Transformer网络来实现时间序列预测
#### 功能1. **多变量输入,单变量输出/可改多输出**1. **多时间步预测,单时间步预测**1. **评价指标**: R², RMSE, MAE, MAPE1. **对比图**1. **数据从Excel/CVS文件中读取,直接替换即可**1. **结果保存到文本中,可以后续处理**#### 代码实现。
2025-04-07 19:30:03
654
原创 基于铁轨缺陷检测数据集构建使用YOLOv8进行目标检测系统 铁轨缺陷检测数据集
安装依赖1.准备数据集1.配置YOLOv81.训练模型1.评估模型1.构建GUI应用程序1.运行应用程序。
2025-04-07 19:28:57
467
原创 基于yolov8训练并使用——监控视角下 车辆识别检测数据集 20500
🔥计算机视觉、图像处理、毕业辅导、作业帮助、代码获取,远程协助,代码定制,私聊会回复!🚀B站项目实战📂QQ+加:673276993🤵♂代做需求:@个人主页通过以上步骤,你可以继续训练一个基于YOLOv8模型的车辆识别系统,并进行预测。train.py用于继续训练模型,predict.py用于加载训练好的模型并进行预测。
2025-04-07 19:27:55
355
原创 基于YOLOv8的训练使用宠物狗数据集-识别 26000多张图像
🔥计算机视觉、图像处理、毕业辅导、作业帮助、代码获取,远程协助,代码定制,私聊会回复!🚀B站项目实战📂QQ+加:673276993🤵♂代做需求:@个人主页通过以上步骤,你可以构建一个基于YOLOv8模型的宠物狗检测系统。用于将JSON格式的标注文件转换为YOLO格式,train.py用于训练模型,predict.py用于加载训练好的模型并进行预测。
2025-04-07 19:26:11
378
原创 基于TT100K交通目标交通标注目标检测数据集构建一个使用YOLOv8进行目标检测的系统 并如何训练交通标注数据集
安装依赖1.准备数据集1.配置YOLOv81.训练模型1.评估模型1.构建GUI应用程序1.运行应用程序。
2025-04-07 19:23:42
649
原创 草莓成熟度检测的YOLOv5模型,并使用Yolov5训练使用草莓成熟度检测数据集模型 并实现可视化及评估推理 3类 yolo标注
以上代码涵盖了从数据准备到模型训练的所有步骤。你可以根据需要调整配置文件中的参数,并运行训练脚本来开始训练YOLOv5模型。确保你的数据集目录结构符合预期,并且所有的文件路径都是正确的。
2025-04-07 19:22:47
218
原创 图像去噪系统,使用生成对抗网络(GAN)和SwinUNet模型,
安装依赖1.准备数据集1.加载预训练模型1.构建GUI应用程序1.运行应用程序return xcnt = 0cnt += 1else:else:return xreturn xelse:else:x = blk(x)return xflops = 0return xreturn xreturn x**kwargs):return xreturn x**kwargs):skips = []return x"""Args:Returns:""""""
2025-04-07 19:21:36
331
原创 YOLOv5进行道路目标检测的系统。航拍 无人机视角道路目标检测数据集 8600张 无人机道路目标数据集检测
安装依赖1.准备数据集1.配置YOLOv51.训练模型1.评估模型1.构建GUI应用程序1.运行应用程序。
2025-04-07 19:20:21
451
原创 基于深度学习的跌倒摔倒检测系统 编程语言-python UI-pyqt5
安装依赖1.准备数据集1.配置YOLOv81.训练YOLOv8模型1.配置OpenPose1.实现跌倒检测逻辑1.构建GUI应用程序1.运行应用程序。
2025-04-07 19:19:14
631
原创 深度学习的肺炎诊断系统 基于python与PyQT5开发
如何运行_这项技术可以提升诊断的速度和准确率,减轻医疗工作人员的负担,以及改善疾病监测和响应速度。基于YOLOv8深度学习框架,通过几千张图片,训练了一个进行智能肺炎诊断的识别模型,可通过病人X射线肺部图像判断病人是否患有肺炎。构建一个基于YOLOv8深度学习框架的智能肺炎诊断系统,并使用Python与PyQt5开发UI界面,听起来是一个非常棒的学习项目。我们将分步骤进行,从环境搭建、数据准备、模型训练到UI开发。🔥计算机视觉、图像处理、毕业辅导、作业帮助、代码获取,远程协助,代码定制,私聊会回复。
2025-04-07 19:13:15
344
原创 构建一个基于YOLOv8模型的苹果新鲜程度检测系统 2类 map50为93.1% 训练集(782张)与验证集(196张)
好的,让我们来构建一个基于YOLOv8模型的苹果新鲜程度检测系统。我们将使用PyTorch 1.10.0,并提供两个主要程序:一个是train.py,用于训练模型;另一个是predict.py,用于加载训练好的模型并进行预测。
2025-04-07 19:08:02
263
原创 构建一个基于YOLOv8轨道异物检测系统+pyqt5的界面 并训练自己的铁路轨道异物数据集
YOLOv8(You Only Look Once version 8)是一种实时目标检测算法,其核心思想是在单个神经网络中同时预测边界框的位置和类别概率。YOLOv8相较于之前的版本,在速度和准确性方面都有显著提升。
2025-04-07 19:05:27
546
原创 构建一个基于YOLOv8的森林火焰烟雾检测系统,并使用PyQt5设计一个简洁的UI界面。这个系统将支持视频文件、图片文件的检测以及实时摄像头检测,森林火灾火焰火数据集
数据集准备:使用已标注的数据集进行模型训练。1.YOLOv8模型训练:使用YOLOv8进行森林火焰烟雾检测模型的训练。1.UI界面设计:使用PyQt5设计一个简洁的UI界面。1.实时摄像头检测:使用OpenCV进行实时摄像头检测。1.模型替换:支持用户更换自己训练的YOLOv8模型。通过上述步骤,你可以构建一个基于YOLOv8的森林火焰烟雾检测系统,包括UI界面设计、实时摄像头检测、模型训练以及整体代码实现。
2025-04-07 19:02:45
627
原创 构建一个基于YOLOv8的人脸表情识别系统,包括UI界面设计、实时摄像头检测、表情识别模型训练以及整体代码实现。
数据集准备:收集人脸表情数据集,如FER2013、RAF-DB等。1.YOLOv8人脸检测:使用YOLOv8进行人脸检测。1.表情识别模型:训练一个表情识别模型(如CNN、ResNet等)。1.UI界面设计:使用PyQt5设计一个简洁的UI界面。1.实时摄像头检测:使用OpenCV进行实时摄像头检测。1.表情识别:结合YOLOv8检测的人脸区域,使用表情识别模型进行表情识别。通过上述步骤,你可以构建一个基于YOLOv8的人脸表情识别系统,包括UI界面设计、实时摄像头检测、表情识别模型训练以及整体代码实现。
2025-04-07 19:01:47
552
原创 构建一个基于YOLOv5的疲劳驾驶检测系统 深度学习目标检测系统 如何实现对疲劳检测打哈欠等进行检测
安装依赖1.准备数据集1.加载预训练模型1.实现疲劳驾驶检测逻辑1.构建GUI应用程序1.运行应用程序。
2025-04-07 19:00:33
843
原创 构建一个基于UNet++的舌象分割系统 从舌象分割训练环境配置到界面图像构建
接下来是使用UNet++进行模型训练的部分。])for epoch in range(20): # 训练周期数。
2025-04-07 18:59:20
163
原创 何构建一个基于DeeplabV3+的语义分割项目 使用PyTorch实现DeeplabV3+模型,并集成一些常见的主干网络和注意力机制,从训练,指标计算到热力图生成呀
那么同学你就可,通过上述步骤,可构建一个全面的语义分割系统,包括数据集准备、模型训练、评估和结果分析。数据分割脚本)1.DeeplabV3+ 训练代码)1.PSPNet 实现pspnet.py)1.SegFormer 实现)1.HRNet 实现hrnet.py)1.UNet 实现unet.py)1.指标计算和绘图)1.热力图生成脚本。
2025-04-07 18:57:42
351
原创 如何构建一个基于CNN+BiLSTM+Attention的轴承寿命预测 并进行数据处理,模型构建 PHM轴承寿命预测
安装依赖1.准备数据集1.数据处理1.模型构建1.训练模型1.评估模型1.构建GUI应用程序1.运行应用程序if bias:nn.ReLU(),nn.ReLU(),x = x.unsqueeze(1) # 添加通道维度 (batch_size, seq_len) -> (batch_size, 1, seq_len)return out。
2025-03-30 18:21:33
426
原创 如何构建一个基于ResNet模型的草莓成熟度分类系统 训练草莓数据集 用于训练resnet等分类模型
首先拥有——草莓数据集,可用于不同成熟度的草莓分类。jpg格式,划分好训练集、验证集,9:1。有低、中、高三种成熟度,每种共1000多张图片。数据集适用于训练resnet等分类模型构建一个基于ResNet模型的草莓成熟度分类系统。我们将使用PyTorch 1.10.0,并提供两个主要程序:一个是train.py,用于训练模型;另一个是predict.py,用于加载训练好的模型并进行预测。
2025-03-30 18:19:26
203
原创 如何构建交通识别系统——并使用yolov8训练使用 交通道路识别数据集 红绿灯 数据集 汽车 行人自行车目标检测数据集 15000,xml和txt标签都有 9类 道路目标检测数据集
假设你的数据集已经准备好,并且分为训练集、验证集和测试集。│ ├── val/│ ├── val/│ ├── val/通过以上步骤,你可以构建一个基于YOLOv8模型的Udacity交通识别系统。用于将VOC格式的标注文件转换为YOLO格式,train.py用于训练模型,predict.py用于加载训练好的模型并进行预测。
2025-03-30 18:18:05
745
原创 如何构建基于YOLOv8➕pyqt5的pcb缺陷检测系统 使用PyQt5创建一个简单的前端界面来显示实时检测结果。
通过上述步骤,你可以使用YOLOv8训练PCB缺陷检测模型,并使用PyQt5创建一个简单的前端界面来显示实时检测结果。该界面支持用户加载自定义模型,从而实现检测目标的自定义。确保数据集结构正确,标注文件格式正确,并且路径配置正确。
2025-03-30 18:17:27
410
原创 构建基于Yolov8Dota数据集的检测系统 使用 YOLOv8 进行训练 无人机小目标检测 适用于YOLO格式的无人机小飞机、轮船、车辆等目标进行检测
我们将使用 YOLOv8 训练一个 Dota 目标检测模型。数据集准备:确保数据集格式正确。1.环境部署:安装必要的库。1.模型训练:使用 YOLOv8 训练模型。1.指标可视化:查看训练过程中的各项指标。1.PyQt5 界面设计:创建一个简单的 GUI 应用来进行预测。构建一个完整的基于 YOLOv8 的 Dota 英雄检测系统,包括数据集准备、环境部署、模型训练、指标可视化展示和 PyQt5 界面设计。训练脚本)1.指标可视化脚本)1.GUI应用代码gui_app.py)1.辅助工具文件。
2025-03-30 18:16:33
616
原创 如何构建基于YOLOv8的烟雾检测系统,并使用PyQt5作为前端框架 三种分类-火焰、烟雾、正常模型-YOLO V8语言
通过上述步骤,你可以使用YOLOv8训练烟雾检测模型,并使用PyQt5创建一个简单的前端界面来显示实时检测结果。确保数据集结构正确,标注文件格式正确,并且路径配置正确好的,让我们详细地介绍如何使用YOLOv8训练烟雾检测数据集,并附上完整的代码。我们将从数据集准备、模型训练、模型测试和推理等方面进行详细介绍。通过上述步骤,你可以使用YOLOv8训练烟雾检测模型,并使用PyQt5创建一个简单的前端界面来显示实时检测结果。确保数据集结构正确,标注文件格式正确,并且路径配置正确。
2025-03-30 18:15:23
629
原创 构建使用Yolov8驾驶行为检测的系统 对驾驶员行为进行检测 并训练出驾驶员驾驶行为检测数据集的模型 如何训练 13000张 6类使用手机 饮酒 打哈欠 安全带 困倦 吸烟等进行检测
安装依赖1.准备数据集1.配置YOLOv51.训练模型1.评估模型1.构建GUI应用程序1.运行应用程序。
2025-03-30 18:14:12
692
原创 构建yolov8-seg裂缝分割系统代码 并训练使用数据集 4000张 yol o格式的裂缝分割数据集合
通过以上步骤,你可以构建一个基于YOLOv8-seg模型的裂缝分割系统。train.py用于训练模型,predict.py用于加载训练好的模型并进行预测。
2025-03-30 18:12:45
804
原创 如何处理快递包裹数据集——并使用深度学习方法进行目标检测和实例分割 物流检测数据
假设YOLOv5已经安装并且可用model.nc = 1 # number of classes (假设只有一个类别:快递包裹)
2025-03-30 18:11:14
504
原创 如何从数据准备到利用Yolov5模型训练和评估
我们可以使用YOLOv5来进行路面病害检测。YOLOv5已经包含了多种预定义的模型架构(如YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x),您可以根据需求选择合适的模型大小。
2025-03-30 18:09:44
283
原创 如何yolov8训练使用——电塔电线电线杆缺陷检测数据集 10000张 带标注 voc yolo 电线杆子缺陷数据集输电线塔缺陷数据集
确保所有图像文件都是.jpg格式,标签文件是VOC格式的.xml文件和YOLO格式的.txt文件。预测和可视化:定义了一个predict_and_plot函数,用于在验证集上进行预测,并可视化输入图像、真实标签和预测结果。数据集转换:convert_voc_to_yolo.py脚本用于将VOC格式的标注文件转换为YOLO格式。“绑扎不规范”, “并线线夹保护壳缺失”, “耐张线夹保护壳缺失”, “横杆腐蚀”, “塔头损坏”训练函数:定义了一个train_model函数,用于训练YOLOv8模型。
2025-03-30 18:08:34
637
原创 如何yolov7训练使用红外弱小飞机目标检测数据集 实现构建红外弱小飞机目标检测系统。926张,bmp和xml相对应,类别-bird 目标检测
#### 数据集介绍#### 完整项目结构#### 文件内容4.5.3.56torchlabelmeshutilmatplotlibnumpypandasnc: 1。
2025-03-30 18:06:55
580
原创 深度学习框架使用Yolov8训练使用——遥感卫星地面目标识别检测数据集 1500张 yolo数据集 遥感地面目标检测数据集 20类
如何使用YOLOv8模型训练卫星图片地面目标识别检测数据集。我们将从数据集的准备、模型的加载、训练配置和训练过程等方面进行详细说明。 2. 数据集配置文件创建一个文件,配置数据集路径和类别信息。3. 划分数据集如果你需要自己划分数据集,可以使用以下Python代码:🔥计算机视觉、图像处理、毕业辅导、作业帮助、代码获取,远程协助,代码定制,私聊会回复!🚀B站项目实战:https://space.bilibili.com/364224477😄 如果文章对你有帮助的话, 欢迎评论 💬点赞?
2025-03-30 18:05:13
527
原创 目标检测使用yolov8训练番茄西红柿成熟度检测数据
番茄成熟度检测数据集800张 有标签professnal拍摄:覆盖2种不同类型,分大番茄和小番茄精准标注:每张图片都已标注好YOLO标签,标注有6类大番茄:红 黄 绿小番茄:红 黄 绿实现一个基于 YOLOv8 的番茄成熟度检测系统。
2025-03-30 18:04:07
650
原创 原创-- 目标检测框架中yolov8训练使用输电塔杆绝缘子红外测温数据集
深度学习目标检测框架训练使用_输电塔杆绝缘子红外测温图像数据集,共800张左右图片,标注为voc格式识别输电塔杆绝缘子数据集输电塔杆绝缘子红外测温图像数据集 800张 voc代码仅供参考:使用YOLOv8来训练输电塔杆绝缘子红外测温图像数据集。#### 环境准备首先,我们需要安装必要的库。import os。
2025-03-30 18:03:09
799
原创 目标检测框架使用Yolov8构建基于深度学习脑肿瘤目标检测系统,yolo训练脑肿瘤数据集 从数据集准备到用户界面开发
我们将使用YOLOv8进行目标检测。以下是训练脚本epochs=50,imgsz=513,batch=16,
2025-03-16 10:55:33
869
原创 面向遥感图像的小目标检测最新方法 FFCA-YOLO
受RFB-s的启发,FEM的整体结构如下图所示。对特征融合而言,作者又提出了特征融合模块(FFM),它可以在不增加计算复杂度的情况下利用通道信息重新加权不同的特征图,进而提升特征的融合策略。为了加强多尺度特征对小目标的表示,充分利用不同通道的特征,所提出的CRC对特征图的通道进行了重新加权,如上图的下半部分所示。最后,作者为了在确保精度的情况下降低模型的计算资源消耗量,又利用部分卷积重构了FFCA-YOLO的骨干网络和颈部网络,得到了一个小版本的FFCA-YOLO模型,称之为L-FFCA-YOLO。
2025-03-16 10:54:41
802
原创 利用深度学习目标检测框架yolov8YOLO8训练使用草莓成熟度数据集 3类 Yolo格式 实现yolov8草莓成熟度检测系统及可视化评估
构建一个完整的基于 YOLOv8 的草莓成熟度检测系统,包括数据集准备、环境部署、模型训练、指标可视化展示、评估和 PyQt5 GUI 开发。训练 YOLOv8 脚本)1.评估 YOLOv8 模型脚本)1.PyQt5 主窗口代码。
2025-03-16 10:53:07
919
Low-Light-Image-Enhancements-using-Matlab-main.zip
2023-12-08
-matlab-hand-written-num-recognization-master.zip
2023-12-08
GPT4-运用学术技巧
2023-11-17
基于物联网的智能农业管理系统的设计与实现.docx
2023-11-02
基于web的某网上商城的设计与实现.docx
2023-11-02
人工智能对管理会计的应用影响研究.docx
2023-11-02
基于物联网的智慧物流发展研究.docx
2023-11-02
公共行政管理效率提升策略的探究
2023-11-02
杨志政基于MATLAB的QPSK和BPSK系统仿真设计与比较
2023-11-02
基于matlab的路面裂缝识别检测
2023-11-02
蓝桥杯算法合集,包含56种算法详解
2023-12-13
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人