自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(93)
  • 资源 (6)
  • 收藏
  • 关注

原创 机器学习基础-2

参考视频: 4 - 1 - Multiple Features (8 min).mkv目前为止,我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x1,x2,...,xn)\left( {x_{1}},{x_{2}},...,{x_{n}} \right)(x1​,x2​,...,xn​)。[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ahtIt3ub-1665933231700)(…/image

2022-10-19 09:11:12 197

原创 机器学习基础-1

基于Python设计,OpenCV,SSD,CNN,机器学习,CNN,SVM,BP神经网络,数字识别,贝叶斯,逻辑回归,卷积神经网络等算法的中文文本分类.车牌识别,知识图谱,数字图像处理,手势识别,边缘检测,图像增强,图像分类,图像分割,色彩增强,低照度。缺陷检测,病害识别,图像缺陷检测,裂缝识别,交通标志识别,夜间车牌识别,人数统计,火焰烟雾火,车道线识别,人脸识别系统,图像去雾处理,图像去模糊,图像复原,图像拼接,图像配准,汉字识别,运动车辆跟踪检测系统,数字图像处理。模式识别,运动目标检测,交通标志物

2022-10-16 23:13:39 237

原创 深度学习机器学习的数学基础(3)

1.n\mathbf{n}n个变量x1,x2,⋯ ,xn\mathbf{x}_{\mathbf{1}}\mathbf{,}\mathbf{x}_{\mathbf{2}}\mathbf{,\cdots,}\mathbf{x}_{\mathbf{n}}x1​,x2​,⋯,xn​的二次齐次函数f(x1,x2,⋯ ,xn)=∑i=1n∑j=1naijxiyjf(x_{1},x_{2},\cdots,x_{n}) = \sum_{i = 1}^{n}{\sum_{j =1}^{n}{a_{{ij}}x_{i}y_{j

2022-10-16 23:11:39 9

原创 深度学习机器学习的数学基础(2)

1.行列式按行(列)展开定理(1) 设A=(aij)n×nA = ( a_{{ij}} )_{n \times n}A=(aij​)n×n​,则:ai1Aj1+ai2Aj2+⋯+ainAjn={∣A∣,i=j0,i≠ja_{i1}A_{j1} +a_{i2}A_{j2} + \cdots + a_{{in}}A_{{jn}} = \begin{cases}|A|,i=j\\ 0,i \neq j\end{cases}ai1​Aj1​+ai2​Aj2​+⋯+ain​Ajn​={∣A∣,i=j0,i=j​或a

2022-10-16 23:08:55 13

原创 深度学习机器学习的数学基础

基于Python设计,OpenCV,SSD,CNN,机器学习,CNN,SVM,BP神经网络,人脸识别系统,图像去雾处理,图像去模糊,图像复原,图像拼接,图像配准,汉字识别,运动车辆跟踪检测系统,数字图像处理。模式识别,运动目标检测,交通标志物识别,疲劳检测。1.导数定义:导数和微分的概念f′(x0)=lim⁡Δx→0 f(x0+Δx)−f(x0)Δxf'({{x}_{0}})=\underset{\Delta x\to 0}{\mathop{\lim }}\,\frac{f({{x}_{0}}+\Delta

2022-10-16 23:06:42 614

原创 A-卷积网络压缩方法总结

低秩近似算法在中小型网络模型上,取得了很不错的效果,但其超参数量与网络层数呈线性变化趋势,随着网络层数的增加与模型复杂度的提升,其搜索空间会急剧增大,目前主要是学术界在研究,工业界应用不多。总体而言,剪枝是一项有效减小模型复杂度的通用压缩技术,其关键之处在于如何衡量个别权重对于整体模型的重要程度。剪枝操作对网络结构的破坏程度极小,将剪枝与其他后端压缩技术相结合,能够达到网络模型最大程度压缩,目前工业界有使用剪枝方法进行模型压缩的案例。

2022-10-10 23:04:07 24

原创 3-模型量化

模型量化是指将神经网络的浮点算法转换为定点。量化有一些相似的术语,低精度(Low precision)可能是常见的。模型量化有以下好处:总结:模型量化主要意义就是加快模型端侧的推理速度,并降低设备功耗和减少存储空间,工业界一般只使用 量化模型,如 、 等移动端模型推理框架都支持模型的 量化和量化模型的推理功能。通常,可以根据 和 的转换机制对量化模型推理方案进行分类。一些框架简单地引入了 和 层,当从卷积或全链接层送入或取出时,它将 转换为 或相反。在这种情况下,如下图的上半部分所示,模型本

2022-10-10 23:02:30 37

原创 3-视频编解码基础

编码的目的是为了压缩,所谓编码算法,就是寻找规律构建一个高效模型,将视频数据中的冗余信息去除。

2022-10-10 22:58:46 281

原创 2-OpenCV3 图像处理笔记

此笔记针对 Python 版本的 opencv3,c++ 版本的函数和 python 版本的函数参数几乎一样,只是矩阵格式从 ndarray 类型变成适合 c++ 的 mat 模板类型。注意,因为 python 版本的opncv只提供接口没有实现,故函数原型还是来自 c++版本的opencv,但是参数解释中的数据类型还是和 python 保持一致。

2022-10-10 22:58:14 270

原创 1-数字图像处理基础

基于Python设计,OpenCV,SSD,CNN,机器学习,CNN,SVM,BP神经网络,数字识别,贝叶斯,逻辑回归,卷积神经网络等算法的中文文本分类.车牌识别,知识图谱,数字图像处理,手势识别,边缘检测,图像增强,图像分类,图像分割,色彩增强,低照度。缺陷检测,病害识别,图像缺陷检测,裂缝识别,交通标志识别,夜间车牌识别,人数统计,火焰烟雾火,车道线识别,人脸识别系统。从数学的角度来看,图像的高斯模糊过程就是图像像素与像素的正态分布做卷积, 同时高斯模糊对图像来说就是一个低通滤波器。

2022-10-10 22:57:32 291

原创 数字图像处理笔记

一副图像可以定义为一个二维函数f(x,y)f(x,y)f(x,y),其中xxx和yyy是空间(平面)坐标,任意一对空间坐标(x,y)(x,y)(x,y)处的幅度值fff称为图像在该坐标点的强度或灰度。当x,yx,yx,y和灰度值fff都是有限的离散量时,我们称该图像为数字图像。数字图像处理是指借助于数字计算机来处理数字图像。注意,数字图像由有限数量的元素组成,每个元素都有一定的位置和数值,这些元素称为像素。

2022-10-10 22:56:46 1393

原创 4-经典YOLO变体模型

我们提出了一种网络缩放方法,不仅可以修改深度、宽度、分辨率,还可以修改网络的结构。实验结果表明,基于CSP方法的YOLOv4目标检测模型在保持最优速度和准确率的前提下,同时也具有向上/向下可伸缩性,可用于不同大小的网络。由此,作者提出了一种网络缩放方法,它不仅改变深度、宽度、分辨率,而且还改变网络的结构。主要工作。设计了一种针对小模型的强大的模型缩放方法,系统地平衡了浅层CNN的计算代价和存储带宽;设计一种简单有效的大型目标检测器缩放策略;分析各模型缩放因子之间的关系,基于最优组划分进行模型缩放;

2022-10-10 22:44:03 755

原创 YOLOv1---YOLOv5论文解读

基于Python设计,OpenCV,SSD,CNN,机器学习,CNN,SVM,BP神经网络,数字识别,贝叶斯,逻辑回归,卷积神经网络等算法的中文文本分类.车牌识别,知识图谱,数字图像处理,手势识别,边缘检测,图像增强,图像分类,图像分割,色彩增强,低照度。缺陷检测,病害识别,图像缺陷检测,裂缝识别,运动车辆跟踪检测系统,数字图像处理。模式识别,运动目标检测,交通标志物识别,疲劳检测等。YOLOv1 出自 2016 CVPR 论文 You Only Look Once:Unified, Real-Time O

2022-10-10 22:43:19 996

原创 RetinaNet解读网络理解

Retinanet 是作者 Tsung-Yi Lin 和 Kaiming He(四作) 于 2018 年发表的论文 Focal Loss for Dense Object Detection.

2022-10-10 22:40:10 49

原创 Mask-RCNN理解

Mask RCNN是作者Kaiming He于2018年发表的论文。

2022-10-10 22:38:22 610

原创 3-FPN网络理解

本篇文章是论文阅读笔记和网络理解心得总结而来,部分资料和图参考论文和网络资料。

2022-10-08 09:10:13 339

原创 目标检测Faster-RCNN论文解读

backbone为vgg16的网络结构如下图所示,可以清晰的看到该网络对于一副任意大小PxQ的图像,首先缩放至固定大小MxN,然后将MxN图像送入网络;而 Conv layers 中包含了 13 个 conv 层 + 13 个 relu 层 + 4 个 pooling 层;RPN网络首先经过 3x3 卷积,再分别生成和对应偏移量,然后计算出proposals;而层则利用 proposals 从 feature maps 中提取送入后续全连接和 softmax 网络作(即分类:proposal是哪种。

2022-09-29 22:57:11 38

原创 深度学习目标检测 Cascade-RCNN网络理解

虽然低IoU阈值,如0.5,会产生噪声检测(),但是,随着IoU阈值的增加,检测性能往往会下降。造成这种情况的主要因素有两个:1)由于在训练过程中正样本呈指数下降,过少的正样本导致网络训练期间过拟合。2)dismatch:检测器在最优的IoU与输入预测的IoU之间会产生mismatch。来解决IoU选择的问题。它由一系列不断增加IoU阈值的检测器组成,可以逐步的更接近目标的预测。。检测器是逐步训练的,前一个检测器输出一个良好的数据分布并作为输入,用于训练下一个更高质量的检测器。

2022-09-29 22:53:43 250

原创 深度学习目标检测模型的评价标准-AP与mAP

为了了解模型的泛化能力,即判断模型的好坏,我们需要用某个指标来衡量,有了评价指标,就可以对比不同模型的优劣,并通过这个指标来进一步调参优化模型。对于分类和回归两类监督模型,分别有各自的评判标准。不同的问题和不同的数据集都会有不同的模型评价指标,比如分类问题,数据集类别平衡的情况下可以使用准确率作为评价指标,但是现实中的数据集几乎都是类别不平衡的,所以一般都是采用AP作为分类的评价指标,分别计算每个类别的AP,再计算mAP。

2022-09-29 22:52:28 562

原创 深度学习目标检测模型的基础

OpenCV、场景文本识别、去雨、机器学习、风格迁移、视频目标检测、去模糊、显著性检测、剪枝、活体检测、人脸关键点检测、3D目标跟踪、视频修复、人脸表情识别、时序动作检测、图像检索、异常检测等边界框:在⽬标检测⾥,我们通常使⽤边界框(,缩写是 )来描述⽬标位置。边界框是⼀个矩形框,可以由矩形左上⻆的 和 轴坐标与右下⻆的 和 轴坐标确定。检测网络中的一些术语解释:⽬标检测算法通常会在输⼊图像中采样⼤量的区域,然后判断这些区域中是否包含我们感兴趣的⽬标,并调整区域边缘从而更准确地预测⽬标的真实边界框(

2022-09-29 22:41:44 35

原创 VoVNet论文解读

作者于2019年发表的论文 An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection. 是对DenseNet网络推理效率低的改进版本。因为DenseNet通过用密集连接,来聚合具有不同感受野大小的中间特征,因此它在对象检测任务上表现出良好的性能。虽然特征重用()的使用,让DenseNet以少量模型参数和FLOPs,也能输出有力的特征,但是使用DenseNet作为backbone。

2022-09-29 22:33:45 383

原创 ShuffleNetv2论文详解

当前,神经网络结构的设计基本由间接的计算复杂度主导,例如FLOPs,但是直接的度量如速度,还取决于其他因素,例如内存的获取损耗和平台特性。因此,我们将使用直接的标准衡量,而不仅仅是FLOPs。因此本文建议直接在目标平台上用直接度量进行测试。基于一系列控制条件实验,作者提出了设计高效网络结构的一些实用指导思想,并据此提出了一个称之为的新结构。综合的对比实验证明了作者的模型在速度和准确性上取得了最佳的平衡()。为了衡量计算复杂度,一个广泛采用的度量方式是浮点运算的次数FLOPs。

2022-09-29 22:33:11 284

原创 RepVGG论文详解

提出了一种简单而强有力的 CNN 架构 RepVGG,相比、RegNet等架构,RepVGG具有更佳的精度-速度均衡;提出采用重参数化技术对plain架构进行训练-推理解耦;在图像分类、语义分割等任务上验证了RepVGG的有效性。我们说的VGG没有任何分支结构,即通常所说的plain或架构。仅使用3×33 \times 33×3类型的卷积。仅使用ReLU作为激活函数。VGG3x3 卷积非常快。

2022-09-29 22:31:58 339

原创 MobileNetv1论文详解

OpenCV、场景文本识别、去雨、机器学习、风格迁移、视频目标检测、去模糊、显著性检测、剪枝、活体检测、人脸关键点检测、3D目标跟踪、视频修复、人脸表情识别、时序动作检测、图像检索、异常检测等一个大小为 h1×w1h_1\times w_1h1​×w1​ 过滤器( 维卷积核),沿着 的左上角移动到右下角,过滤器每移动一次,将过滤器参数矩阵和对应特征图 h1×w1×c1h_1 \times w_1 \times c_1h1​×w1​×c1​ 大小的区域内的像素点相乘后累加得到一个值,又因为 的数量(通道数

2022-09-29 22:31:19 486

原创 CSPNet论文详解

CSPNet是作者于2019发表的论文。也是对DenseNet网络推理效率低的改进版本。作者认为网络推理成本过高的问题是由于网络优化中的梯度信息重复导致的。CSPNet通过将梯度的变化从头到尾地集成到特征图中,在减少了计算量的同时可以保证准确率。CSP(,简称CSPNet) 方法可以减少模型计算量和提高运行速度的同时,还不降低模型的精度,是一种更高效的网络设计方法,同时还能和Resnet、Densenet、Darknet等backbone结合在一起。虽然已经出现了和。

2022-09-29 22:28:27 728 1

原创 计算机视觉深度学习面试题

Pytorch的Conv2d函数不要求提供 输入数据的大小(H,W),但是要提供输入深度,Keras的Conv2d函数第一层要求提供参数(H,W, C),其他层不需要。梯度消失是指在深度学习训练的过程中,梯度随着BP算法中的链式求导逐层传递逐层减小,最后趋近于0,导致对某些层的训练失效;梯度爆炸与梯度消失相反,梯度随着BP算法中的链式求导逐层传递逐层增大,最后趋于无穷,导致某些层无法收敛;

2022-09-29 09:48:57 244

原创 CNN基本部件-常用激活函数

建议首先使用目前最常用的 ReLU 激活函数,但需注意模型参数初始化和学习率的设置;为了进一步提高模型精度,可尝试 Leaky ReLU、参数化 ReLU、随机化 ReLU 和 ELU。但四者之间实际性能优劣并无一致性结论,需具体问题具体对待。

2022-09-28 22:00:08 41

原创 机器学习基础

深度学习是机器学习的一个特定分支,要想充分理解深度学习,就必须对机器学习的基本原理有深刻的理解。机器学习的本质属于应用统计学,其更多地关注如何用计算机统计地估计复杂函数,而不太关注为这些函数提供置信区间,大部分机器学习算法可以分成监督学习和无监督学习两类;通过组合不同的算法部分,例如优化算法、代价函数、模型和数据集可以建立一个完整的机器学习算法。

2022-09-28 21:55:31 28

原创 深度学习使用CNN进行图像分类

图像分类是计算机视觉中最基础的任务,基本上深度学习模型的发展史就是图像分类任务提升的发展历史,但是图像分类并不是那么简单,也没有被完全解决。

2022-09-28 21:53:53 158

原创 1-深度学习算法基础

目标检测、语义分割、深度估计、超分辨率、3D目标检测、CNN、GAN、目标跟踪、竞赛解决方案、去模糊、显著性检测、剪枝、活体检测、人脸关键点检测、3D目标跟踪、视频修复、人脸表情识别、时序动作检测、图像检索、异常检测等。算法向量化,利用空间中两个向量的夹角,来判断这两个向量的相似程度:(在欧几里得空间中,欧式距离其实就是向量空间中两点之间的距离。(分子就是两个向量的内积,分母是两个向量的模长乘积)一,欧氏距离与余弦相似度(cos距离)通过对两个文本分词,

2022-09-28 21:53:05 23

原创 概率与信息论

概率论是用于表示不确定性声明的数学框架。它不仅提供了量化不确定性的方法,也提供了用于导出新的不确定性(statement)的公理。概率论的知识在机器学习和深度学习领域都有广泛应用,是学习这两门学科的基础。在人工智能领域,概率论主要有两种用途。首先,概率法则告诉我们 AI 系统如何推理,据此我们设计一些算法来计算或者估算由概率论导出的表达式。其次,我们可以用概率和统计从理论上分析我们提出的 AI 系统的行为。

2022-09-28 21:49:22 204

原创 西瓜书笔记

目标检测、语义分割、深度估计、超分辨率、3D目标检测、CNN、GAN、目标跟踪、竞赛解决方案、去模糊、显著性检测、剪枝、活体检测、人脸关键点检测、3D目标跟踪、视频修复、人脸表情识别、时序动作检测、图像检索、异常检测等好的学习器应该尽可能学出适用于所有潜在样本的”普遍规律“。由于事先无法知道新样本是什么样子,所以无法直接获得泛化误差,同时训练误差又由于过拟合现象的存在而不适合作为标准,那么现实中如何进行模型评估与选择就是一个重要的问题了。通常使用一个测试集来评估学习器对新样本的判别能力,把测试集上的”测试误

2022-09-28 21:48:39 187

原创 常见机器学习算法

个最相邻的样本中的大多数属于一个类别,那该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分类样本所属的类别。思想就是在训练集中数据和标签已知的情况下,输入测试数据,将测试数据的特征与训练集中对应的特征进行相互比较,找到训练集中与之最为相似的前。同时,KNN通过依据 k 个对象中占优的类别进行决策,而不是单一的对象类别决策,这两点就是KNN算法的优势。算法的核心思想是如果一个样本在特征空间中的。代表我们对属于同一个类的样本中心点的猜测。

2022-09-28 21:46:58 269

原创 机器学习基础

深度学习是机器学习的一个特定分支,要想充分理解深度学习,就必须对机器学习的基本原理有深刻的理解。机器学习的本质属于应用统计学,其更多地关注如何用计算机统计地估计复杂函数,而不太关注为这些函数提供置信区间,大部分机器学习算法可以分成监督学习和无监督学习两类;通过组合不同的算法部分,例如优化算法、代价函数、模型和数据集可以建立一个完整的机器学习算法。

2022-09-28 21:46:01 261

原创 算法图解笔记

十大经典排序算法动画与解析,看我就够了!(配代码完全版)10 大排序算法时间复杂度及空间复杂度如下图:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-A010KZLD-1664372500316)(…/data/images/排序算法时间复杂度.jpg)]二分查找是一种算法,其输入是一个有序的元素列表(必须有序的原因稍后解释)。如果要查找的元素包含在列表中,二分查找返回其位置;否则返回null,使用二分查找时,每次猜测的是中间的数字,从而将余下的数字排除一半。(

2022-09-28 21:42:04 386

原创 C++数据结构剑指offer题解

leetcode 58-最后一个单词的长度给你一个字符串 s,由若干单词组成,单词前后用一些空格字符隔开。返回字符串中最后一个单词的长度。单词:是指仅由字母组成、不包含任何空格字符的最大子字符串。C++代码public:s += ' ';// 存放字符串的数组// 临时字符串if(!}}else{}}// 数组最后一个元素}};

2022-09-28 10:35:53 48

原创 Shell 语法基础

在 Shell 中,用括号来表示数组,数组元素用"空格"符号分割开。数组名=(值1 值2 ... 值n)

2022-09-27 22:54:54 102

原创 C++-CPP 编程基础

析构函数的名称与类的名称是完全相同的,只是在前面加了个波浪号(~)作为前缀,它不会返回任何值,也不能带有任何参数。在 C++ 语言中,,当我们使用基类的引用(或指针)调用一个虚函数时,将发生动态绑定,即函数运行的版本由实参决定,运行时自动选择函数的版本。多继承形式下的构造函数和单继承形式基本相同,只是要在派生类的构造函数中调用多个基类的构造函数。静态函数在编译的时候就已经确定运行时机,虚函数在运行的时候动态绑定。析构函数与构造函数对应,类的析构函数是类的一种特殊的成员函数,是一个动态分配存储空间的容器。

2022-09-27 22:54:23 14

原创 C++日期和时间编程总结

C-style日期时间库,位于 头文件中。这是原先 头文件的 C++ 版本。chronoC++ 11 中新增API,增加了时间点,时长和时钟等相关接口(使用较为复杂)。在 C++11 之前,C++ 编程只能使用 C-style 日期时间库,其精度只有秒级别,这对于有高精度要求的程序来说,是不够的。但这个问题在C++11 中得到了解决,C++11 中不仅扩展了对于精度的要求,也为不同系统的时间要求提供了支持。

2022-09-27 22:53:47 121

原创 C++基础-资源管理:堆、栈与 RAII

当定义的局部变量的生命结束时,它的析构函数就会自动的被调用,如此,就不用程序员显示的去调用释放资源的操作了。RAII 要求,资源的有效期与持有资源的对象的生命期严格绑定,即由对象的构造函数完成资源的分配(获取),同时由析构函数完成资源的释放。,在内存管理的语境下,指的是函数调用过程中产生的本地变量和调用数据的区域。,在内存管理的语境下,指的是动态内存分配的区域,和数据结构中的“大根堆和小根堆”不是一个概念。RAII 源于 C++,在 Java,C#,D,Ada,Vala 和 Rust 中也有应用。

2022-09-27 22:52:44 13

leetcode刷题记录,包含代码和思路讲解,非常详细

leetcode刷题记录,包含代码和思路讲解,非常详细

2022-07-28

机器学习要求概率论基础知识,包含全面,讲解深刻。

机器学习要求概率论基础知识。

2022-07-28

1 数学分析基础知识(牛顿法拟牛顿法)20191020

1 数学分析基础知识(牛顿法拟牛顿法)20191020

2022-07-28

吴恩达 Deeplearning深度学习笔记v5.44.pdf

吴恩达 Deeplearning深度学习笔记v5.44.pdf

2021-09-09

fer2013_selete_wb.zip

fer2013_selete_wb

2021-08-26

车牌识别,车牌检测,车辆定位。

数据包含车牌识别数据集以及demo。

2021-08-26

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除