采用机器学习或深度学习方法处理振动信号,使用风力电机异音诊断数据集来构建一个智能检验算法数据预处理、特征提取、模型选择训练等
采用机器学习或深度学习方法处理振动信号,使用风力电机异音诊断数据集来构建一个智能检验算法_
jia假设你有下面这个数据集
风力电机异音诊断数据集
【数据背景】在风力电机生产线上普遍采用人工听音的方法分辨良、次品,不仅成本高,而且重复、单调的听音工作极易引起人员疲劳,容易出现误判,若个别不良品混入整批成品中,会给工厂带来严重经济损失,甚至严重影响产品声誉。基于加速度传感器采集的振动信号,利用机器学习、深度学习等人工智能技术,设计智能检验的算法,要求算法对故障电机不能有漏识别,在召回100%的情况下,尽量提高预测准确率,以达到替代人工质检的目的。
【数据描述】数据集包含2个文件,Motor_tain.zip和Motor_testP.zip:
Motor_tain.zip:用于训练的采集数据,其中文件夹“正样本”包含30个异常电机的数据样本,文件夹“负样本”包含500个正常电机的数据样本;
Motor_testP.zip:用于测试的采集数据,包含500个电机的数据样本;
【文件说明】采集数据时是分别对电机正转、反转时的振动信号进行采集。也就是说每台电机有两条数据,其中F代表正转,B代表反转。每条数据包含两路振动信号,数据文件命名规则:编号_旋转方向.csv。
🔥计算机视觉、图像处理、毕业辅导、作业帮助、代码获取,远程协助,代码定制,私聊会回复!
🚀B站项目实战:https://space.bilibili.com/364224477
😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏
📂QQ+加:673276993
🤵♂代做需求:@个人主页
以下文字及代码仅供参考。
为了使用风力电机异音诊断数据集来构建一个智能检验算法,我们将采用机器学习或深度学习方法处理振动信号。下面是一个详细的流程指南,包括数据预处理、特征提取、模型选择、训练、评估和部署。
以下文字及代码仅供参考。
1. 数据预处理
解压缩数据
首先解压缩Motor_train.zip
和Motor_testP.zip
文件,以访问CSV格式的数据文件。
unzip Motor_train.zip -d Motor_train
unzip Motor_testP.zip -d Motor_testP
加载数据
编写Python脚本来加载并整理数据,确保每台电机的正转(F)和反转(B)数据都被正确读取,并且标签被正确分配。
import pandas as pd
import os
from sklearn.preprocessing import LabelEncoder
def load_data(path):
data = []
labels = []
for root, dirs, files in os.walk(path):
for file in files:
if file.endswith('.csv'):
df = pd.read_csv(os.path.join(root, file))
data.append(df.values)
# 根据文件夹名称确定标签
label = 'normal' if '负样本' in root else 'abnormal'
labels.append(label)
return data, labels
# 加载训练数据
X_train, y_train = load_data('Motor_train')
# 加载测试数据
X_test, _ = load_data('Motor_testP') # 测试集中没有提供标签
# 对标签进行编码
le = LabelEncoder()
y_train_encoded = le.fit_transform(y_train)
2. 特征提取
考虑到振动信号是时序数据,我们可以从每个信号中提取时间域和频域特征。这里我们使用简单的统计特征作为示例:
import numpy as np
def extract_features(signal):
features = {
'mean': np.mean(signal),
'std': np.std(signal),
'max': np.max(signal),
'min': np.min(signal),
'rms': np.sqrt(np.mean(signal**2)), # 均方根值
'skewness': pd.Series(signal).skew(),
'kurtosis': pd.Series(signal).kurt()
}
return features
# 提取所有训练数据的特征
features_train = [extract_features(signal) for signal in X_train]
X_train_features = pd.DataFrame(features_train)
# 提取所有测试数据的特征
features_test = [extract_features(signal) for signal in X_test]
X_test_features = pd.DataFrame(features_test)
3. 模型选择与训练
对于二分类问题,可以选择多种模型。由于你希望在召回率100%的情况下尽量提高预测准确率,可以考虑以下几种模型:
在这里,我们将使用随机森林作为示例:
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
# 分割训练集为训练和验证集
X_train_split, X_val_split, y_train_split, y_val_split = train_test_split(
X_train_features, y_train_encoded, test_size=0.2, stratify=y_train_encoded, random_state=42)
# 初始化并训练随机森林模型
rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
rf_model.fit(X_train_split, y_train_split)
# 验证模型性能
y_pred = rf_model.predict(X_val_split)
print(confusion_matrix(y_val_split, y_pred))
print(classification_report(y_val_split, y_pred))
4. 调整阈值以确保召回率100%
为了保证故障电机不被漏识,可以在验证集上调整决策阈值,确保召回率为100%,即使这可能导致一些正常电机被错误地分类为异常。
from sklearn.metrics import precision_recall_curve
# 获取预测概率
y_scores = rf_model.predict_proba(X_val_split)[:, 1]
# 计算精确率-召回率曲线
precision, recall, thresholds = precision_recall_curve(y_val_split, y_scores)
# 找到最接近召回率100%的阈值
threshold_100_recall = thresholds[np.argmax(recall >= 1.0)]
# 使用找到的阈值进行最终预测
final_predictions = (rf_model.predict_proba(X_test_features)[:, 1] >= threshold_100_recall).astype(int)
5. 模型评估与优化
评估模型在测试集上的表现,并根据需要进一步优化模型参数或特征工程。
# 如果有测试集的真实标签,可以在此处评估模型性能
# print(classification_report(true_labels, final_predictions))
6. 模型部署
一旦模型训练完成并且达到了满意的性能水平,就可以将其部署到实际的应用环境中。这可能涉及到将模型导出为ONNX格式或其他适合部署的格式,以及编写相应的API接口来接收实时振动信号输入并返回检测结果。