毕设前期准备——调制信号+聚类+信号预处理+类内类间识别+星座图模块

本文探讨了毕业设计中关于调制信号识别的方法,重点在于星座图的使用和聚类分析。通过确定2PSK到64QAM等调制方式,分析了聚类算法如C均值、模糊C均值、K-means和减法聚类,并指出减法聚类在未知数据处理上的优势。此外,还涉及信号预处理的码元速率和定时估计,以及类间和类内识别策略,利用γmax特征值区分PSK和QAM信号。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.调制信号的确定

不同的识别算法通过提取不同的特征值,适用的信号种类也不尽相同,而不同调制方式产生的已调信号也具有不同的特征,因此,合适的特征值的提取对于识别率具有极大的影响。

根据毕业设计任务书、毕业设计开题报告、毕业实习报告以及大量的国内外相关文献,总结得到:
本次毕业设计重点在基于特征提取的识别方法,其中基于星座图的识别方法为关键。要用到星座图,星座的形状特征可以通过如计算星座点的数量等方式得到, 星座点的数量和位置可以通过聚类分析方法获得。星座图表示信号瞬时幅度的分布情况,通过星座图可以对高阶的数字已调信号进行直观地表示。理论上,使用星座图特征可以对 PSK 信号和 QAM 信号进行识别。相对而言,对PSK信号的识别相对QAM难,因为要用到聚类,复杂度较高。

分类器中除了主要的分类器也有文献提出基因编程(Genetic Programming,GP)结合K最近邻(K-NearestNeighbor,KNN)分类算法,可对 BPSK、QPSK、16QAM、64QAM进行分类。且使用模式识别技术的主要目的是提高在噪声影响较大时的识别率。

根据自己的能力,暂定2PSK、4PSK、8PSK、8QAM、16QAM、32QAM、64QAM为要被识别的调制方式。

2.聚类

在接收信号经过下变频、低通滤波以及定时采样后,若载频完全同频同相,定时提取完全理想,就可以得到调制时的电平序列值,由此可以重构出调制时的星座图。 在重构出星座图后,可通过对星座图进行聚类,得到星座图的调制点数,通过对点数的统计,可获得信号的调制阶数,从而进行识别。

聚类就是按照一定的条件、根据数据的特征从

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值