题意:
从一个矩阵的左上角走到右下角。有多少种走法。0代表空地,1代表障碍物
分析:
1 动态规划:一个点的路径等于它上方点的路径数加上它左方点的路径数。
2 对于障碍物:我们的动态规划的点dp[ i ] [ j ]是针对非障碍物的。
而对于障碍物:两点:首先它本身所在位置的路径数为0
其次它可达的下一点如果是空地,那么这个空地的路径数不应该加上障碍物之前的路径数。
这两点都可以通过:将障碍物点的路径数设置为0实现。
public class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
int[][] dp = new int[m][n];
for(int i = 0; i < m; i++) {
for(int j = 0; j < n; j++) {
if(obstacleGrid[i][j] == 1) {
dp[i][j] = 0;
}
if(obstacleGrid[i][j] == 0){
if(i == 0 && j == 0)
dp[i][j] = 1;
else if(i == 0)
dp[i][j] = dp[i][j-1];
else if(j == 0)
dp[i][j] = dp[i-1][j];
else
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
}
return dp[m-1][n-1];
}
}
本文介绍了一个使用动态规划解决的问题——计算在存在障碍物的情况下从矩阵左上角到右下角的不同路径数量。文章详细解释了算法思路,并给出了具体的Java代码实现。
1074

被折叠的 条评论
为什么被折叠?



