Type | Notes |
---|---|
Title | Theory of Probability |
Author(s) | Scott Sheffield |
Year | 2016 |
Level | Graduate |
Location | MIT |
Department | Mathematics |
Course Number | 18.175 |
Lecture(s) | L01–L03 (/26) |
这是MIT数学系的课程,讲的是高等的概率论,一共26课时,用的主要教材还是Durrett。
Scott Sheffield是MIT做概率理论的大牛,已经发表成果有:
- 概率顶刊:6篇AoP,10篇PTRF;
- 数学顶刊:2篇AoM,2篇Inventiones Mathematicae,2篇JAMS,1篇Acta。
截至目前有8891次引用。并于2011年拿到了Loève奖(中国的丁剑也在2023年拿到了)。
概率空间与 σ \sigma σ-algebra
这部分与实分析课程一样,简单回顾一下motivation。
为什么不能将 σ \sigma σ-algebra取为样本空间 Ω \Omega Ω的幂集?因为这样的话,会发现在 [ 0 , 1 ) [0,1) [0,1)上的概率测度无法同时满足平移不变性和可数可加性:
解决方案有这3种:
- 不要选择公理;
- 将概率公理中的可数可加性弱化为有限可加性;
- 保持选择公理和可数可加性,但不将概率定义在样本空间的幂集上。
一般的做法都是选第3种方案。但是要付出代价:往后余生,无论什么时候要讨论在某个空间上的某个测度时,都要担心 σ \sigma σ-algebra是什么。
构造 R R R上的概率测度
如何构造 R \mathbb{R}