- 博客(876)
- 资源 (33)
- 收藏
- 关注
原创 LangChain 1.0 内置的Agent中间件详解
本文介绍了LangChain内置的14种中间件功能,重点解析了SummarizationMiddleware的应用。该中间件能在模型调用前自动压缩历史会话,通过智能保留最近消息和摘要处理来优化token使用。文章提供了完整的Python实现示例,包括工具定义、中间件配置和测试流程,展示了如何通过设置触发条件和保留规则来管理对话上下文。这种自动化压缩方案能有效减少约50-70%的token消耗,提升大模型应用的响应效率。
2026-02-02 22:46:45
624
原创 LangChain 1.0 Agent开发实战指南
LangChain 1.0通过create_agent与LangGraph深度整合,提供生产级Agent运行时。核心机制包括: create_agent作为统一入口,自动构建ReAct范式的图结构,将Agent决策、工具调用等映射为图遍历; 工具集成采用@tool装饰器或继承BaseTool,通过name、description等元数据控制调用; 提供中间件、内存管理等扩展点,支持声明式开发模式,显著提升开发效率; 内置Python执行、搜索、数据库等丰富工具,支持安全调用与治理。
2026-01-31 21:38:13
602
原创 LangChain 1.0 记忆管理:短期与长期记忆详解
记忆管理摘要 LangChain 1.0通过LangGraph实现记忆管理,核心概念包括: 状态(State):存储消息的结构体 检查点(Checkpointer):负责状态持久化 线程ID:隔离不同会话的上下文 记忆分为: 短期记忆:与会话生命周期绑定,使用InMemorySaver或PostgresSaver实现 长期记忆:跨会话持久存储,与用户/业务实体关联 示例展示了短期记忆的实现方式,包括内存存储(InMemorySaver)和数据库存储(PostgresSaver)两种方案,通过thread_i
2026-01-31 21:33:28
579
原创 LangChain 1.0 核心组件2
本文介绍了LangChain中的流式传输和结构化输出解析两大核心功能。在流式传输方面,LangChain 1.0引入了自动流式模式,支持通过.stream()方法逐块处理数据,并提供了astream_events()来监听完整的语义生命周期事件,便于调试和构建UI。在结构化输出解析方面,重点介绍了StructuredOutputParser与Pydantic模型的结合使用,通过with_structured_output()方法确保模型输出符合预定格式,适用于信息抽取等场景。文章还展示了如何在agent中使
2026-01-28 17:51:53
837
原创 大模型Agent面试精选题(第六辑)-Agent工程实践
大模型Agent面试精选15题(第六辑)摘要 本文精选15道Agent工程实践面试题,涵盖API设计、中间件、插件系统等核心知识点。主要内容包括: API设计:遵循RESTful规范,考虑异步支持、错误处理和性能优化,实现安全易用的接口 中间件设计:采用链式处理模式,包含认证、日志、限流等常见中间件,实现横切关注点 插件系统:通过标准化接口和事件驱动机制,实现功能扩展和隔离执行 版本管理:采用语义化版本和API版本控制策略,确保系统兼容性 工程实践:包含测试方法、监控系统、CI/CD等DevOps相关内容
2025-12-23 18:33:07
1302
1
原创 大模型Agent面试精选题(第五辑)-Agent提示词工程
本文精选15道Agent提示词工程面试题,涵盖设计原则、系统提示词、模板设计、Few-shot学习、Chain-of-Thought等核心内容。摘要要点如下: 提示词设计五大原则:清晰明确、结构化、角色设定、上下文提供和约束条件 系统提示词四要素:角色定义、能力说明、行为准则和输出格式 常用模板模式:任务型、对话型、工具调用型和错误处理型 Few-shot学习技巧:示例选择、格式统一、数量控制和顺序优化 Chain-of-Thought应用方法:显式、隐式和自适应三种方式 Token优化策略:精简表达、结构
2025-12-23 18:31:49
998
原创 OpenAgents:让AI智能体Agent像人类一样联网协作
OpenAgents是一个开源项目,旨在构建持久化的AI智能体协作网络,解决传统多智能体系统的协作短命、知识隔离和缺乏记忆等问题。它提供模块化设计、多协议支持、长期记忆系统等功能,支持人类与AI智能体共同协作。通过Python代码示例展示了如何快速创建和连接智能体到网络,并列举了多种应用场景,如多角色辩论、实时新闻分析等。OpenAgents致力于打造一个持续进化的智能体互联网生态系统。
2025-12-23 18:19:41
1495
2
原创 阿里开源的Mobile-Agent:让AI帮你操作手机电脑,这个工具太强了
阿里巴巴通义实验室开源的Mobile-Agent是一款跨平台GUI自动化工具,支持手机、PC和网页操作。用户通过自然语言指令即可完成复杂任务,如APP操作、网页搜索等。其核心基于GUI-Owl多模态模型,具备任务分解、进度跟踪和异常处理能力。项目已迭代至v3版本,获得多项学术认可,并提供了在线体验和本地部署方案,适用于自动化测试、用户行为模拟等场景。
2025-12-16 13:16:11
2001
4
原创 Wave Terminal 让 AI 真正理解你的工作环境!告别手动搬运信息
摘要: Wave Terminal是一款集成AI助手的终端工具,凭借15000+ GitHub星标走红。其核心亮点是上下文感知AI,能自动读取终端日志和文件内容,无需手动复制粘贴。用户可直接询问"这行为什么错了",AI会自动分析报错信息;支持多文件分析、修改配置、总结网页内容等。内置wsh ai命令实现命令行调用AI,支持OpenAI、Claude等多种模型。通过整合终端、编辑器、浏览器和AI,Wave Terminal大幅减少窗口切换,提升问题解决效率3-5倍,是开发者提升生产力的利器
2025-12-16 00:31:56
666
原创 大模型应用之Agent 9种设计模式,从入门到精通只要20分钟
本文深入解析9种主流Agent设计模式,探讨如何通过不同范式增强大语言模型的任务执行能力。Few-Shot模式通过示例引导模型学习;ReAct模式构建"思考-行动-观察"循环提升决策能力;Plan and Solve模式先规划再执行,适合复杂任务分解。这些模式通过角色定义、指令引导、工具调用等方式,使大模型能像人类一样思考、规划和执行任务,显著提升AI系统的智能水平和执行效率。文章还包含具体代码示例,展示如何实现这些模式。
2025-12-16 00:25:15
1159
原创 大模型Agent面试精选15题(第四辑)-Agent与RAG(检索增强生成)结合的高频面试题
本文精选15道关于大模型Agent与RAG结合的面试题,涵盖架构设计、检索优化、性能调优等核心内容。文章首先探讨三种Agent+RAG架构模式:RAG作为工具、Agent增强RAG和混合架构,并提供Python实现示例。随后分析系统设计的关键因素,包括检索策略、结果融合和性能优化。重点讲解Agent如何智能决策RAG调用时机,介绍意图识别、关键词匹配和置信度判断等策略。最后详细说明将RAG封装为Agent工具的三种实现方式,从简单封装到增强型多模式封装。全文约8000字,适合准备大模型应用岗位面试的开发者参
2025-12-16 00:15:24
751
原创 大模型Agent面试精选15题(第三辑)LangChain框架与Agent开发的高频面试题
本文精选15道关于LangChain框架与Agent开发的高频面试题,涵盖核心组件、工具集成、记忆管理、性能优化等关键知识点。主要内容包括: LangChain Agent框架的核心组件(LLM、Tools、Agent、Memory等)及其协作流程 LangChain Agent与原生Agent的区别与优劣势对比 LangChain中5种主要Agent类型及其特点 自定义工具集成步骤与实现方法 工具集成的最佳实践与注意事项 文章通过代码示例和对比表格,详细解析了LangChain框架的应用场景和开发技巧,适
2025-12-16 00:14:12
1145
原创 AI大模型Agent面试精选15题(第二辑)智能体的高频面试题
本文精选15道AI Agent高频面试题,涵盖Function Calling、AutoGPT、反思机制、评估方法等核心知识点。主要内容包括: Function Calling与Tool Use:解析两者的区别与适用场景,探讨工具选择优化策略和组合调用模式。 AutoGPT与反思机制:剖析AutoGPT的自主执行原理,详解反思机制的工作流程及实现方式,提供防止死循环的控制策略。 评估与优化:介绍Agent性能评估指标,探讨多Agent协作模式和安全性保障措施。 进阶应用
2025-12-04 08:32:31
992
原创 AI大模型Agent面试精选15题-Agent基础概念
本文精选15道AI Agent高频面试题,涵盖核心概念、框架与应用。AI Agent是一种能够感知环境、自主决策并执行任务的智能系统,其核心组件包括规划模块、工具调用、记忆管理和反思机制。与传统LLM应用相比,Agent具备主动执行、工具调用和状态管理等优势。记忆管理分为短期、长期和工作记忆三种类型,分别用于对话上下文、历史数据和任务状态存储。ReAct框架通过交替进行推理(Reasoning)和行动(Acting)来完成任务,具有动态调整和错误恢复的优势,适用于不确定环境 .
2025-12-04 08:30:29
952
原创 大模型面试精选20题(第二辑)模型架构、训练技巧
本文是大模型面试精选的第二辑,从不同角度精选20道高频面试题,涵盖模型架构、训练技巧、部署优化、Agent、多模态等核心知识点,适合准备大模型相关岗位面试的同学。
2025-11-27 15:19:49
778
原创 AI大模型面试精选20题:从理论到实战
本文精选20道大模型高频面试题,涵盖基础理论、微调方法、推理优化等核心知识点。基础篇解析Transformer架构、注意力机制、归一化方法等关键技术;微调篇介绍LoRA、SFT、RLHF等前沿方法及其应用场景。内容深入浅出,适合准备AI岗位面试的读者快速掌握大模型核心概念与技术要点,提升面试通过率。全文约8000字,系统梳理大模型知识体系,帮助读者构建完整的认知框架。
2025-11-26 11:18:30
712
原创 Code Wiki:AI驱动的代码文档自动生成系统
Google推出AI代码文档工具Code Wiki,自动生成并实时更新文档。它通过Gemini大模型分析代码逻辑,提供自然语言查询、架构图可视化等功能,支持热门开源项目。相比传统工具,Code Wiki无需手动维护,代码变更时文档自动同步。该工具适用于理解开源项目、团队协作和技术学习等场景,未来将支持私有仓库。
2025-11-25 08:51:58
1459
原创 AI大模型应用开发岗位面试题(持续更新中)
AI大模型应用岗位的面试题通常覆盖技术原理、工程实践、系统设计、业务理解与MLOps等多个维度。根据2025年最新趋势整理,常见题型可分为以下几类,并附代表性题目与考察重点
2025-11-23 12:04:20
475
原创 微调Rerank模型完整指南
使用LlamaIndex微调Cross-Encoder类型的Rerank模型来提升RAG系统的检索精度。Rerank模型作为"精排"组件,通过联合编码查询-文档对,能比Bi-Encoder模型带来10-30%的准确率提升。文章详细对比了两种模型的差异,并阐述了微调的必要性:通过领域适配可显著提升垂直场景下的表现。数据准备部分提供了三种样本收集策略和规模建议,推荐保持1:1到1:4的正负样本比例。最后给出了基于LlamaIndex的完整微调流程代码示例,包括环境配置、数据处理
2025-11-21 10:26:51
427
原创 如何选择合适的Embedding模型
2025年最新Embedding模型选型指南:Qwen3系列表现突出。文章从语言支持、模型大小、部署方式和成本四个维度,为中文、英文及多语言场景提供选型建议。新发布的Qwen3-Embedding系列在MTEB榜单中超越OpenAI和Google,性能提升40%,适合高精度需求。针对RAG系统等不同场景,文章给出具体模型推荐和代码示例,并比较本地部署与API调用的优缺点,帮助开发者根据性能、成本和安全需求做出最优选择。
2025-11-20 14:14:55
1098
原创 如何微调任何Embedding模型?适配器微调让通用模型秒变领域专家
本文介绍如何使用LlamaIndex的Adapter适配器技术微调嵌入模型,无需大量GPU资源即可提升特定领域的检索效果。Adapter方法通过在预训练模型上添加轻量级适配器层,仅训练少量参数,显著降低计算需求。文章详细演示了从数据准备(自动生成问答对)、模型微调到效果评估的完整流程,对比了Adapter与全量微调的效果差异。该方法适用于BGE、OpenAI等各类嵌入模型,特别适合垂直领域RAG系统的优化,能在普通电脑上实现20%+的检索效果提升,仅需保存几MB的适配器参数。
2025-11-20 12:01:06
1006
原创 从零开始:手把手教你微调Embedding模型,让检索效果提升10倍!
本文介绍了使用LlamaIndex微调Embedding模型以提升RAG系统检索效果的方法。主要内容包括:1. 采用三步走策略:自动生成训练数据集、模型微调和效果评估;2. 详细代码解析,展示如何用LlamaIndex实现从PDF文档自动生成问答对训练数据;3. 使用SentenceTransformersFinetuneEngine进行模型微调;4. 通过命中率评估模型效果,实验显示微调后命中率从8.9%提升至23.5%。该方法无需人工标注,能显著提升专业领域检索准确率,适合特定业务场景应用。
2025-11-20 11:18:28
876
原创 大模型Agent开发实战:2025“大运河杯”数据开发应用创新大赛——智慧应急
混合查询架构优先使用向量数据库检索 自动质量评估和回退机制必要时切换到 MySQL Text-to-SQL 查询智能回退策略基于相似度分数判断结果质量检测回答中的低质量关键词自动触发 MySQL 查询回退
2025-11-20 11:09:06
1087
原创 乐学LangChain(3):多轮对话和批量对话
本文介绍了LangChain中对话模型的消息类型及其使用方法。主要内容包括:1) 五种消息类型:SystemMessage(设定AI行为)、HumanMessage(用户输入)、AIMessage(AI回复)、ChatMessage(自定义角色)和FunctionMessage(函数调用);2) 基本调用示例,展示如何通过SystemMessage设定AI角色并用HumanMessage传递用户输入;3) 批量处理功能,演示如何同时发送多组不同编程语言背景的消息请求。
2025-10-19 21:27:57
530
原创 乐学LangChain(1):总体架构和核心组件
LangChain是一个AI开发框架,提供文档、API和代码资源。官网(langchain.com)包含基础介绍,Python文档详细说明使用方法,API文档提供接口参考。GitHub仓库托管源代码。其架构历经多个版本迭代,从v0.1到最新的v1版本,核心设计理念一脉相承,各版本架构图仍具参考价值,特别是v0.1和v0.2/0.3版本展示了框架的演进过程。开发者可通过这些资源快速掌握LangChain的核心功能与应用方法。
2025-10-19 14:12:07
911
原创 乐学LangChain(2):调用大模型和简单的问答
LangChain封装了各种主流大模型,可以直接使用LangChain来调用大模型。ChatOpenAI是调用OpenAI以及各种兼容大模型的对话模块。3、支持的大模型:ChatGPT系列,Deepseek,siliconflow等。1、系统配置参数,可以在项目根目录创建.env文件,dotenv加载即可。4、invoke方法可以直接传文本,也可以传提示词模版,或多轮对话的内容;:用于身份验证的密钥,由大模型服务商(如 OpenAI、百度千帆)提供。:指定要调用的具体大模型名称(如。stream流式输出。
2025-10-19 14:03:50
481
原创 为什么大模型应用开发,几乎都绕不开 LangChain
LangChain已成为大模型应用开发的核心工具,其价值在于将大模型从"聊天黑箱"转变为可执行任务的智能系统。作为大模型的"操作系统",它支持多模型接入、模块化开发流程(LCEL)和智能体(Agent)功能,并能通过LangSmith实现可视化监控。典型应用场景包括知识问答、智能体开发和结构化输出等,但需注意其并非适用于所有项目——简单任务可直接调用SDK,复杂流程可配合LangGraph使用。LangChain推动了大模型开发的工程化进程,使AI从"能说&
2025-10-16 20:40:28
742
原创 聊聊 OpenAI 的大棋局:模型、资本与产业链共振
OpenAI在DevDay后公布了三层战略布局:模型迭代(GPT-5幻觉率降至1.3%)、产品生态(ChatGPT作为统一入口,Sora视频工具)和基础设施(与芯片/能源巨头合作)。其核心是豪赌产业链协同发展,通过预承诺融资支持合作伙伴,构建系统壁垒。风险包括现金流压力、供应链瓶颈、版权合规等问题。未来可能形成三种结局:成为AI时代操作系统级平台、部分领域被竞争对手切入,或关键环节断裂被迫收缩。观察重点将集中在用户留存、基础设施落地及政策走向等信号。
2025-10-16 20:36:41
1444
原创 OpenAI刚发新品,LangChain创始人就“开炮”了:我们为什么坚决不碰可视化?
OpenAI推出AgentKit可视化工具引发热议,但LangChain创始人Harrison Chase撰文指出,可视化工作流存在"两头不讨好"的困境:对非技术人员仍逻辑复杂,对开发者则难以维护。他认为未来的方向是智能体(Agent)而非工作流(Workflow),前者能自主决策而非按固定流程执行。对于复杂应用,LangChain主张回归代码开发,提供更强大的控制能力。文章认为AI发展方向应是prompt驱动的智能体系统,而非图形化流程构建器,体现了对AI开发方式的深度思考。
2025-10-15 20:20:48
720
原创 差点被AI干掉,结果成了“AI时代的Excel”?这家公司n8n的故事太顶了!
n8n公司8个月内收入暴增4倍,其成功秘诀在于:1)战略转型,从自动化工具升级为AI应用开发平台;2)砍掉销售KPI,专注社区运营,在YouTube等平台形成口碑传播;3)坦诚商业模式,公开代码但不标榜"开源",明确盈利目标赢得开发者信任。CEO Jan Oberhauser将产品定位为"AI时代的Excel",通过可视化操作连接各类AI模型和工具,目标是成为AI应用开发的标准平台。目前该平台已实现从个人开发者到企业客户的全覆盖,展现出强劲增长势头。
2025-10-15 20:16:52
439
原创 AgentWorkflow 实战:从单 Agent 到多 Agent 协作的完整方案
LlamaIndex的AgentWorkflow是为解决AI应用在多任务协作中的挑战而设计的框架,支持跨子任务(检索、分析、写作等)的自动化编排、状态管理和透明执行。其核心基于事件驱动的Workflows架构,提供多Agent协作、Human-in-the-Loop(人工介入)及中断恢复能力。基础功能支持单Agent任务处理,而进阶的Multi-Agent模式通过职责划分和Handoff机制实现复杂流程(如报告生成)。事件流监控确保执行透明性,Human-in-the-Loop机制允许人工审校关键节
2025-10-06 13:00:50
919
原创 让 Agent 说“机器能懂的话”——LlamaIndex 构建 Agent 的结构化输出策略
在构建 Agent 时,单纯依赖自然语言输出非常脆弱 —— 下游系统、存储、可视化都难解析。LlamaIndex 支持把 Agent 的回答“收口”成结构化 JSON / Pydantic 模型。本文带你理解背后的原理、常见方案、实践示例与工程思考。
2025-10-01 13:27:59
795
原创 LlamaIndex智能体Agents开发-记忆管理
智能体(Agent)设计中的记忆模块是其核心组成部分,LlamaIndex框架提供了强大的记忆管理功能,支持多智能体系统的持久性、上下文连贯性和深度推理。
2025-09-28 19:18:30
212
原创 LlamaIndex开发多智能体Agents入门介绍
本文介绍了如何使用LlamaIndex开发多智能体系统。主要内容包括:1)安装配置LLM环境;2)定义工具函数并将其包装为智能体可调用的工具;3)创建专业智能体基类,封装特定领域功能;4)构建多智能体管理系统,包含协调器代理和多个专业代理(如数学、天气、搜索等);5)通过示例演示系统如何根据查询类型自动选择并调用合适的专业代理处理请求。该系统通过协调器智能路由,实现了复杂任务的有效分解和专业化处理。
2025-09-28 13:50:07
1028
原创 LlamaIndex智能体Agents开发全攻略
本文介绍了基于LlamaIndex框架构建智能代理系统的完整流程。LlamaIndex提供了数据连接、索引构建、查询执行等工具,支持创建具有自主性和反应性的智能代理。文章详细解析了工具集成(检索工具、函数工具、API工具)和代理创建工作流程,包括基础代理和结合检索与计算能力的高级代理实现。通过示例代码展示了如何将代理集成到工作流中,并提供了完整的测试案例,包括知识检索、数学计算、天气查询等功能的实现与执行结果。该系统能够综合多种工具功能,为用户提供准确、有用的响应。
2025-09-26 23:15:52
973
原创 Python多进程和多线程的入门介绍
本文介绍了多任务处理的概念,重点区分了并发(任务交替执行)和并行(真正同时执行)的区别。文章详细讲解了进程的概念,指出进程是CPU资源分配的最小单位,并对比了多进程(多个程序同时运行)与多线程(单个程序内多任务执行)的差异。最后通过Python代码示例,演示了如何使用multiprocessing模块创建多进程程序,实现"敲代码"和"听音乐"两个任务的同时执行,并解释了主进程与子进程的执行顺序问题。
2025-09-18 14:36:40
953
原创 豆包·图像创作模型 Seedream 4.0功能太强大,终于可以告别PS了
豆包推出图像生成模型Seedream4.0,支持4K多模态生图,融合文本和图像输入,实现多图融合、参考生图等功能,推理速度提升10倍。该模型在文生图和图像编辑榜单中排名第一,可快速生成科技感图片满足博客配图需求,还支持海报设计、故事书创作、商业摄影等多样化应用。Seedream4.0突破了传统单一模式,能保持特征、转换概念图,适用于多种创意场景,大幅提升创作效率。
2025-09-17 23:07:13
1518
原创 大模型操作SQL查询Text2SQL
本文介绍了如何使用LlamaIndex框架的NLSQLTableQueryEngine组件实现自然语言到SQL的转换功能。该技术通过将用户输入的自然语言问题与数据库表结构信息结合,利用大模型生成可执行的SQL语句,从而实现对数据库的查询操作。文章以Postgres数据库中的user_search_history和chat_session表为例,演示了如何配置查询引擎并执行自然语言查询(如"每个用户的查询统计")。这种方法降低了数据库查询门槛,使非技术人员也能轻松获取结构化数据,适用于聊天
2025-09-15 17:34:27
1354
原创 RAG落地的最后一个环节:评估 RAG 应用
RAG应用评估的重要性与方法 在部署RAG应用前,评估是确保质量的关键环节。大模型输出的不确定性、知识库动态变化以及模型选择等问题,都要求建立科学的评估体系。评估依据包括输入问题、生成答案、上下文和参考答案四大要素。主要评估指标涵盖正确性、语义相似度、忠实度、上下文相关性和答案相关性等维度。这些评估能有效衡量回答质量、检测知识干扰,并为模型选择提供依据。定期评估对维护RAG应用的稳定性和准确性至关重要。
2025-09-10 14:40:30
1047
原创 Docling将pdf转markdown以及与AI生态集成
特征Docling 简化了文档处理,解析各种格式(包括高级 PDF 理解),并提供与 gen AI 生态系统的无缝集成。特征解析多种文档格式 ,包括 PDF、DOCX、PPTX、XLSX、HTML、WAV、MP3、图像(PNG、TIFF、JPEG 等)等;高级 PDF 理解,包括页面布局、阅读顺序、表格结构、代码、公式、图像分类等;统一、富有表现力的 DoclingDocument 表示格式;各种导出格式和选项,包括 Markdown、HTML、 DocTags 和无损 JSON;
2025-09-05 17:07:53
896
区块链|超级账本HyperLedger 入门基础讲解ppt
2017-09-21
使用Hyperledger Composer开发区块链应用
2017-11-23
图形化硬盘分区软件 硬盘分区工具
2009-11-14
PowerDesigner的数据库设计与实现 PowerDesigner数据库建模技术
2010-03-11
ftp上传工具--LeapFTP
2011-12-29
TortoiseGit 汉化包 git工具最新的git傻瓜式操作界面工具
2020-02-20
免费的制作gif_简单实用的GIF动图制作工具
2020-01-04
jQuery 的VS2008插件
2010-01-20
jQuery 1.4.1 中文文档 CHM 版
2010-02-02
winform换肤源码
2010-04-23
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅