RAG进阶:开源的AI原生向量数据库Chroma

一、Chroma 核心概念与优势

1. 什么是 Chroma?

Chroma 是一款开源的向量数据库,专为高效存储和检索高维向量数据设计。其核心能力在于语义相似性搜索,支持文本、图像等嵌入向量的快速匹配,广泛应用于大模型上下文增强(RAG)、推荐系统、多模态检索等场景。与传统数据库不同,Chroma 基于向量距离(如余弦相似度、欧氏距离)衡量数据关联性,而非关键词匹配。

GitHub地址:

https://github.com/chroma-core/chroma

官方文档:

https://docs.trychroma.com/

2. 核心优势

  • 轻量易用:以 Python/JS 包形式嵌入代码,无需独立部署,适合快速原型开发。
  • 灵活集成:支持自定义嵌入模型(如 OpenAI、HuggingFace),兼容 LangChain 等框架。
  • 高性能检索:采用 HNSW 算法优化索引,支持百万级向量毫秒级响应。
  • 多模式存储:内存模式用于开发调试,持久化模式支持生产环境数据落地。

 

二、安装和基础配置

 1、安装Chroma

支持windows、ubuntu等操作系统,Python>=3.9  。

创建虚拟环境以及安装

#创建虚拟环境
conda create -n chromadb python==3.10

#激活
conda activate chromadb

#安装chromadb
pip install chromadb

注意:Chroma 默认是本地嵌入式数据库,并不原生支持远程访问像传统数据库那样(比如 PostgreSQL 那种 client-server 模式)。

当然官方也提供了客户端-服务器端模式(Client-Server Mode),服务器端的启动方式如下:

#服务器端启动,默认端口号8000
chroma run --path /db_path

2、初始化客户端

 内存模式调试,实验的场景):

import chromadb
client = chromadb.Client()

持久化模式(生产环境):

在创建的时候,可以配置本地的存储路径

client = chromadb.PersistentClient(path="/path/to/save") # 数据保存至本地目录

Client-Server模式的客户端:

前两种,都是本地模式,chroma的服务端和客户端需要位于同一台机器。CS模式可以独立部署,通过httpclient进行访问。

import chromadb

chroma_client = chromadb.HttpClient(host='localhost', port=8000)

三、增删改查操作

1. 创建集合(Collection

集合是 Chroma 中管理数据的基本单元,类似传统数据库的表。 集合的name名称有以下约束:
  • 名称的长度必须介于 3 到 63 个字符之间。
  • 名称必须以小写字母或数字开头和结尾,中间可以包含点、破折号和下划线。
  • 名称不得包含两个连续的点。
  • 该名称不能是有效的 IP 地址。

Chroma 集合是用一个名称和一个可选的嵌入函数创建的。

如果您提供嵌入函数,则每次获取集合时都必须提供它。

# 创建
collection = client.create_collection(name="my_collection", embedding_function=emb_fn)


# 获取
collection = client.get_collection(name="my_collection", embedding_function=emb_fn)


# 若没有则创建,若有则获取
collection = chroma_client.get_or_create_collection(name="my_collection2")

如果不提供嵌入函数,则使用默认的嵌入函数 sentence transformer  使用的的是一个小型的模型all-MiniLM-L6-v2,该模型主要是针对英语场景。一般我们都需要自定义一个嵌入函数:

import chromadb
from sentence_transformers import SentenceTransformer


class SentenceTransformerEmbeddingFunction:
    def __init__(self, model_path: str, device: str = "cuda"):
        self.model = SentenceTransformer(model_path, device=device)

    def __call__(self, input: list[str]) -> list[list[float]]:
        if isinstance(input, str):
            input = [input]
        return self.model.encode(input, convert_to_numpy=True).tolist()


# 创建/加载集合(含自定义嵌入函数)
embed_model = SentenceTransformerEmbeddingFunction(
    model_path=r"D:\Test\LLMTrain\testllm\llm\BAAI\bge-m3",
    device="cuda"  # 无 GPU 改为 "cpu"
)

# 创建客户端和集合
client = chromadb.Client()
collection = client.create_collection("my_knowledge_base", 
                                      metadata={"hnsw:space": "cosine"},
                                      embedding_function=embed_model)

创建collect时,可以配置如下参数。

  • name标识collect的名称,是必填项;
  • embedding_function,指定嵌入函数,不填为默认的嵌入模型。
  • metadata,元数据,比如索引方式等,非必填。
from datetime import datetime

collection = client.create_collection(
    name="my_collection", 
    embedding_function=emb_fn,
    metadata={
        "description": "my first Chroma collection",
        "created": str(datetime.now())
    }  
)

集合有一些常用方法:

  • peek() - 返回集合中前 10 个项目的列表。
  • count() -返回集合中的项目数。
  • modify() -重命名集合
collection.peek() 
collection.count() 
collection.modify(name="new_name")

2、写入数据

写入数据时,配置以下参数:

  • document,原始的文本块。
  • metadatas,描述文本块的元数据,kv键值对。
  • ids,文本块的唯一标识,每个文档必须具有唯一关联的ID。 若添加两次相同的 ID 将导致仅存储初始值。
  • embeddings,对于已经向量化的文本块,可以直接写入结果。如果不填,则在写入时,使用指定或者默认的嵌入函数对documents进行向量化。
collection.add(
    documents=["lorem ipsum...", "doc2", "doc3", ...],
    metadatas=[{"chapter": "3", "verse": "16"}, {"chapter": "3", "verse": "5"}, {"chapter": "29", "verse": "11"}, ...],
    ids=["id1", "id2", "id3", ...]
)

或者

collection.add(
    embeddings=[[1.1, 2.3, 3.2], [4.5, 6.9, 4.4], [1.1, 2.3, 3.2], ...],
    metadatas=[{"chapter": "3", "verse": "16"}, {"chapter": "3", "verse": "5"}, {"chapter": "29", "verse": "11"}, ...],
    ids=["id1", "id2", "id3", ...]
)

3、修改数据

提供ids(文本唯一标识)。

collection.update(
    ids=["doc1"],  # 使用已存在的ID
    documents=["RAG是一种检索增强生成技术222"]
)

4、更新插入方法

Chroma 还支持更新插入操作,更新现有项目,如果项目尚不存在则添加它们。

collection.upsert(
    ids=["id1", "id2", "id3", ...],
    embeddings=[[1.1, 2.3, 3.2], [4.5, 6.9, 4.4], [1.1, 2.3, 3.2], ...],
    metadatas=[{"chapter": "3", "verse": "16"}, {"chapter": "3", "verse": "5"}, {"chapter": "29", "verse": "11"}, ...],
    documents=["doc1", "doc2", "doc3", ...],
)

5、删除数据

Chroma 支持通过以下方式从集合中删除项目ID使用delete。与每个项目相关的嵌入、文档和元数据将被删除。

还支持where过滤器。如果没有ID提供,它将删除集合中与where筛选。

# 提供ids
collection.delete(ids=["doc1"])
collection.delete(
    ids=["id1", "id2", "id3",...],
	where={"chapter": "20"}
)

6、查询数据

(1)查询所有数据

all_docs = collection.get()
print("集合中所有文档:", all_docs)

(2)根据ids查询

可以通过以下方式从集合中检索项目ID使用get

collection.get(
	ids=["id1", "id2", "id3", ...],
	where={"style": "style1"}
)

(3)查询嵌入

可以通过多种方式查询 Chroma 集合,使用query方法。比如 使用query_embedding。

collection.query(
    query_embeddings=[[11.1, 12.1, 13.1],[1.1, 2.3, 3.2], ...],
    n_results=10,
    where={"metadata_field": "is_equal_to_this"},
    where_document={"$contains":"search_string"}
)

查询将返回n_result每个最接近的匹配查询嵌入,按顺序排列。 可选where过滤字典可以通过metadata与每个文档关联。 此外,where document可以提供过滤字典来根据文档内容进行过滤。

(4)查询相似文档

还可以通过一组查询文本query_texts. Chroma 将首先嵌入每个查询文本与集合的嵌入函数,然后使用生成的嵌入执行查询。

# 查询相似文档
results = collection.query(
    query_texts=["什么是RAG技术?"],
    n_results=3
)

print("查询的结果",results)
查询结果
  • 当使用 get 或 query 时,您可以使用include参数来指定您想要返回的数据包括:embeddings, documents,metadatas;include为数组,可以传多个值。
  • 对于查询query,默认返回距离distances结果。
  • embeddings出于性能考虑,默认不返回,直接显示None ,若想返回,则include中包含embeddings即可。
  • ID始终会返回。
  • 返回值里有included参数,表明本次返回的数据有哪些类型。
  • embeddings将以二维 NumPy 数组的形式返回。
# Only get documents and ids
collection.get(
    include=["documents"]
)

collection.query(
    query_embeddings=[[11.1, 12.1, 13.1],[1.1, 2.3, 3.2], ...],
    include=["documents"]
)
#查询的结果

{'ids': [['doc1', 'doc3', 'doc2']], 
'embeddings': None, 
'documents': [['RAG是一种检索增强生成技术', '三英战吕布', '向量数据库存储文档的嵌入表示']], 
'uris': None,
'included': ['metadatas', 'documents', 'distances'], 
'data': None, 
'metadatas': [[{'source': 'tech_doc'}, {'source': 'tutorial1'}, {'source': 'tutorial'}]], 
'distances': [[0.2373753786087036, 0.7460092902183533, 0.7651787400245667]]
}

四、实战操作

将一批数据插入向量数据库,再根据一个问题从向量数据库中找出相似数据。

 1、安装包

pip install sentence_transformers

pip install modelscope

2、下载Embedding模型到本地

#模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('BAAI/bge-m3',cache_dir=r"D:\Test\LLMTrain\testllm\llm")

3、写入数据和查询相似文本

import chromadb
from sentence_transformers import SentenceTransformer


class SentenceTransformerEmbeddingFunction:
    def __init__(self, model_path: str, device: str = "cuda"):
        self.model = SentenceTransformer(model_path, device=device)

    def __call__(self, input: list[str]) -> list[list[float]]:
        if isinstance(input, str):
            input = [input]
        return self.model.encode(input, convert_to_numpy=True).tolist()


# 创建/加载集合(含自定义嵌入函数)
embed_model = SentenceTransformerEmbeddingFunction(
    model_path=r"D:\Test\LLMTrain\testllm\llm\BAAI\bge-m3",
    device="cuda"  # 无 GPU 改为 "cpu"
)

# 创建客户端和集合
client = chromadb.PersistentClient(path=r"D:\Test\LLMTrain\chromadb_test\chroma_data")
collection = client.get_or_create_collection("my_knowledge_base",
                                      metadata={"hnsw:space": "cosine"},
                                      embedding_function=embed_model)

# 添加文档
collection.add(
    documents=[ "向量数据库存储文档的嵌入表示", "三英战吕布","RAG是一种检索增强生成技术"],
    metadatas=[{"source": "tech_doc"}, {"source": "tutorial"}, {"source": "tutorial1"}],
    ids=["doc1", "doc2", "doc3"]
)

# 查询相似文档
results = collection.query(
    query_texts=["什么是RAG技术?"],
    n_results=3
)

print("查询的结果",results)

执行返回结果:

查询的结果 
{
'ids': [['doc3', 'doc2', 'doc1']], 
'embeddings': None, 
'documents': [['RAG是一种检索增强生成技术', '三英战吕布', '向量数据库存储文档的嵌入表示']], 
'uris': None, 
'included': ['metadatas', 'documents', 'distances'], 
'data': None, 
'metadatas': [[{'source': 'tutorial1'}, {'source': 'tutorial'}, {'source': 'tech_doc'}]], 
'distances': [[0.2373753786087036, 0.7460092902183533, 0.7651787400245667]]
}

查看结果,我们重点看 distances,值是从小到大排序的,所以3条数据与问题“什么是RAG技术?”的相似度情况:distances值越小越相似。因此,第1条数据与问题越相似。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值