HDU-1098-Ignatius's puzzle

f(x+1)=5*(x+1)^13+13*(x+1)^5+k*a*(x+1) ;
用二项式定理展开f(x+1)=5*( C(13,0)+C(13,1)*x+……+C(13,13)*x^13 ) + 13*( C(5,0)+C(5,1)*x+……+C5,5)*x^5 ) + k*a*(x+1)
可以得到 f(x+1)=f(x)+5*( C(13,0)+C(13,1)*x+……+C(13,12)*x^12 ) + 13*( C(5,0)+C(5,1)*x+……+C5,4)*x^4 ) + k*a
f(x+1)=f(x)+ 5*( C(13,1)*x+……+C(13,12)*x^12 ) + 13*( C(5,1)*x+……+C(5,4)*x^4 ) + 5*C(13,0)+13*C(5,0)+ k*a
显然f(x)+ 5*( C(13,1)*x+……+C(13,12)*x^12 ) + 13*( C(5,1)*x+……+C5,4)*x^4 ) 能被65整除,那么只需满足后部分被65整除即可。
5*C(13,0)+13*C(5,0)+ k*a =18+k*a ;
只要满足65|(18+k*a),65|f(x+1)就成立,也就是f(x)对于任意x都满足 65|f(x) 。

对于给定的k,只有搜索满足 65|(18+k*a) 的a 即可,a的大小一定是1—-64。

代码:

#include<iostream>
using namespace std;
int main()
{
    int k;
    while(cin>>k)
    {
        int a;
        int flag=0;
        for(a=0;a<65;a++)
        {
            if((18+k*a)%65==0)
            {
                flag=1;
                break;
            }
        }
        if(flag)cout<<a<<endl;
        else
            cout<<"no"<<endl;
    }


    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值