f(x+1)=5*(x+1)^13+13*(x+1)^5+k*a*(x+1) ;
用二项式定理展开f(x+1)=5*( C(13,0)+C(13,1)*x+……+C(13,13)*x^13 ) + 13*( C(5,0)+C(5,1)*x+……+C5,5)*x^5 ) + k*a*(x+1)
可以得到 f(x+1)=f(x)+5*( C(13,0)+C(13,1)*x+……+C(13,12)*x^12 ) + 13*( C(5,0)+C(5,1)*x+……+C5,4)*x^4 ) + k*a
f(x+1)=f(x)+ 5*( C(13,1)*x+……+C(13,12)*x^12 ) + 13*( C(5,1)*x+……+C(5,4)*x^4 ) + 5*C(13,0)+13*C(5,0)+ k*a
显然f(x)+ 5*( C(13,1)*x+……+C(13,12)*x^12 ) + 13*( C(5,1)*x+……+C5,4)*x^4 ) 能被65整除,那么只需满足后部分被65整除即可。
5*C(13,0)+13*C(5,0)+ k*a =18+k*a ;
只要满足65|(18+k*a),65|f(x+1)就成立,也就是f(x)对于任意x都满足 65|f(x) 。
用二项式定理展开f(x+1)=5*( C(13,0)+C(13,1)*x+……+C(13,13)*x^13 ) + 13*( C(5,0)+C(5,1)*x+……+C5,5)*x^5 ) + k*a*(x+1)
可以得到 f(x+1)=f(x)+5*( C(13,0)+C(13,1)*x+……+C(13,12)*x^12 ) + 13*( C(5,0)+C(5,1)*x+……+C5,4)*x^4 ) + k*a
f(x+1)=f(x)+ 5*( C(13,1)*x+……+C(13,12)*x^12 ) + 13*( C(5,1)*x+……+C(5,4)*x^4 ) + 5*C(13,0)+13*C(5,0)+ k*a
显然f(x)+ 5*( C(13,1)*x+……+C(13,12)*x^12 ) + 13*( C(5,1)*x+……+C5,4)*x^4 ) 能被65整除,那么只需满足后部分被65整除即可。
5*C(13,0)+13*C(5,0)+ k*a =18+k*a ;
只要满足65|(18+k*a),65|f(x+1)就成立,也就是f(x)对于任意x都满足 65|f(x) 。
对于给定的k,只有搜索满足 65|(18+k*a) 的a 即可,a的大小一定是1—-64。
代码:
#include<iostream>
using namespace std;
int main()
{
int k;
while(cin>>k)
{
int a;
int flag=0;
for(a=0;a<65;a++)
{
if((18+k*a)%65==0)
{
flag=1;
break;
}
}
if(flag)cout<<a<<endl;
else
cout<<"no"<<endl;
}
return 0;
}