题意:
方程f(x)=5*x^13+13*x^5+k*a*x;输入任意一个数k,是否存在一个数a,对任意x都能使得f(x)能被65整除。
分析:
我们假设存在这个a,那么所有的f(x)都能被65整除。令x=1,此时就看(18+k*a)能不能被65整除,令a从1开始,一直循环到65即可,因为这就相当于循环了一个周期,到a=66时就(18+k*a)%65的值重复了。
看到过大佬用数学归纳法证明,也放上来:
数论,数学归纳法,使f(0)能整除65 然后 假设 f(x)能整除65 证明f(x+1)也能整除65,这样就能满足题意任意x的条件了。
f(0)=0 能整除65, f(1)=18+ka 能整除65(假设的),假设f(x)能整除65,那么f(x+1)=f(x)+5*[C(13,1)x^12+……+C(13,13)x^0]+13*[C(5,1)x^4……+C(5,5)x^0]+ka=f(x)+5*[C(13,1)x^12+……+C(13,12)x^1]+13*[C(5,1)x^4……+C(5,4)x^1]+18+ka。(二项式展开,泰勒展开)
可以发现除了18+ka外 其他都能整除65;所以要使f(x+1)要能整除65,那么需要18+ka要能整除65(注意:这不是个充要条件 ,而是一个必要不充分条件)
现在整个问题转换为 使 18+ka 能整除65的最小 a值;假设k=1,而要使a值最小 那么a最大能取到65
所以直接枚举每个样例a到65即可。
---------------------
原文:https://blog.csdn.net/hackerwin7/article/details/18847747!
代码:
#include <cstdio>
using namespace std;
int main()
{
int k;
while(~scanf("%d", &k)){
int flag = 0;
for(int a = 0; a <= 65; a++){
if((18 + k * a) % 65 == 0){
printf("%d\n", a);
flag = 1;
break;
}
}
if(!flag) printf("no\n");
}
return 0;
}