HDU1098 Ignatius's puzzle 数论

题意:

方程f(x)=5*x^13+13*x^5+k*a*x;输入任意一个数k,是否存在一个数a,对任意x都能使得f(x)能被65整除。

分析:

我们假设存在这个a,那么所有的f(x)都能被65整除。令x=1,此时就看(18+k*a)能不能被65整除,令a从1开始,一直循环到65即可,因为这就相当于循环了一个周期,到a=66时就(18+k*a)%65的值重复了。

看到过大佬用数学归纳法证明,也放上来:

数论,数学归纳法,使f(0)能整除65 然后 假设 f(x)能整除65 证明f(x+1)也能整除65,这样就能满足题意任意x的条件了。

f(0)=0 能整除65, f(1)=18+ka 能整除65(假设的),假设f(x)能整除65,那么f(x+1)=f(x)+5*[C(13,1)x^12+……+C(13,13)x^0]+13*[C(5,1)x^4……+C(5,5)x^0]+ka=f(x)+5*[C(13,1)x^12+……+C(13,12)x^1]+13*[C(5,1)x^4……+C(5,4)x^1]+18+ka。(二项式展开,泰勒展开)

可以发现除了18+ka外 其他都能整除65;所以要使f(x+1)要能整除65,那么需要18+ka要能整除65(注意:这不是个充要条件 ,而是一个必要不充分条件)

现在整个问题转换为  使 18+ka 能整除65的最小 a值;假设k=1,而要使a值最小 那么a最大能取到65

所以直接枚举每个样例a到65即可。
--------------------- 
原文:https://blog.csdn.net/hackerwin7/article/details/18847747!

代码: 

#include <cstdio>
using namespace std;
int main()
{
    int k;
    while(~scanf("%d", &k)){
        int flag = 0;
        for(int a = 0; a <= 65; a++){
            if((18 + k * a) % 65 == 0){
                printf("%d\n", a);
                flag = 1;
                break;
            }
        }
        if(!flag) printf("no\n");
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值