阿里云天池竞赛-零基础入门CV赛事-Task1 赛题理解

1赛事理解

  • 赛题名称:零基础入门CV之街道字符识别
  • 赛题目标:通过这道赛题可以引导大家走入计算机视觉的世界,主要针对竞赛选手上手视觉赛题,提高对数据建模能力。
  • 赛题任务:赛题以计算机视觉中字符识别为背景,要求选手预测街道字符编码,这是一个典型的字符识别问题。
    为了简化赛题难度,赛题数据采用公开数据集SVHN,因此大家可以选择很多相应的paper作为思路参考。

1.1学习目标

  • 理解赛题背景和赛题数据
  • 完成赛题报名和数据下载,理解赛题的解题思路

1.2 赛题数据

赛题以街道字符为为赛题数据,数据集报名后可见并可下载,该数据来自收集的SVHN街道字符,并进行了匿名采样处理。
在这里插入图片描述注意: 按照比赛规则,所有的参赛选手只能使用比赛给定的数据集完成训练,不能使用SVHN原始数据集进行训练。比赛结束后将会对Top选手进行代码审核,违规的选手将清除排行榜成绩。

训练集数据包括3W张照片,验证集数据包括1W张照片,每张照片包括颜色图像和对应的编码类别和具体位置;为了保证比赛的公平性,测试集A包括4W张照片,测试集B包括4W张照片。

需要注意的是本赛题需要选手识别图片中所有的字符,为了降低比赛难度,我们提供了训练集、验证集和测试集中所有字符的位置框。

1.3 数据标签

对于训练数据每张图片将给出对于的编码标签,和具体的字符框的位置(训练集、测试集和验证集都给出字符位置),可用于模型训练:

FieldDescription
top左上角坐标X
height字符高度
left左上角最表Y
width字符宽度
label字符编码

字符的坐标具体如下所示:
在这里插入图片描述
在比赛数据(训练集、测试集和验证集)中,同一张图片中可能包括一个或者多个字符,因此在比赛数据的JSON标注中,会有两个字符的边框信息:
在这里插入图片描述

1.4 评测指标

选手提交结果与实际图片的编码进行对比,以编码整体识别准确率为评价指标。任何一个字符错误都为错误,最终评测指标结果越大越好,具体计算公式如下:
Score=编码识别正确的数量/测试集图片数量

1.5 读取数据

为了方便大家进行数据读取,在此我们给出JSON中标签的读取方式:

import json
train_json = json.load(open('../input/train.json'))

# 数据标注处理
def parse_json(d):
   arr = np.array([
       d['top'], d['height'], d['left'],  d['width'], d['label']
   ])
   arr = arr.astype(int)
   return arr

img = cv2.imread('../input/train/000000.png')
arr = parse_json(train_json['000000.png'])

plt.figure(figsize=(10, 10))
plt.subplot(1, arr.shape[1]+1, 1)
plt.imshow(img)
plt.xticks([]); plt.yticks([])

for idx in range(arr.shape[1]):
   plt.subplot(1, arr.shape[1]+1, idx+2)
   plt.imshow(img[arr[0, idx]:arr[0, idx]+arr[1, idx],arr[2, idx]:arr[2, idx]+arr[3, idx]])
   plt.title(arr[4, idx])
   plt.xticks([]); plt.yticks([])

在这里插入图片描述

1.6 解题思路

赛题思路分析:赛题本质是分类问题,需要对图片的字符进行识别。但赛题给定的数据图片中不同图片中包含的字符数量不等,如下图所示。有的图片的字符个数为2,有的图片字符个数为3,有的图片字符个数为4。

字符属性图片
字符:42 字符个数:2在这里插入图片描述
字符:241 字符个数:3在这里插入图片描述
字符:7358 字符个数:4在这里插入图片描述

因此本次赛题的难点是需要对不定长的字符进行识别,与传统的图像分类任务有所不同。为了降低参赛难度,我们提供了一些解题思路供大家参考:

  • 简单入门思路:定长字符识别

可以将赛题抽象为一个定长字符识别问题,在赛题数据集中大部分图像中字符个数为2-4个,最多的字符 个数为6个。
因此可以对于所有的图像都抽象为6个字符的识别问题,字符23填充为23XXXX,字符231填充为231XXX。
在这里插入图片描述
经过填充之后,原始的赛题可以简化了6个字符的分类问题。在每个字符的分类中会进行11个类别的分类,假如分类为填充字符,则表明该字符为空。

  • 专业字符识别思路:不定长字符识别
    在这里插入图片描述
    在字符识别研究中,有特定的方法来解决此种不定长的字符识别问题,比较典型的有CRNN字符识别模型。
    在本次赛题中给定的图像数据都比较规整,可以视为一个单词或者一个句子。
  • 专业分类思路:检测再识别

在赛题数据中已经给出了训练集、验证集中所有图片中字符的位置,因此可以首先将字符的位置进行识别,利用物体检测的思路完成。
在这里插入图片描述
此种思路需要参赛选手构建字符检测模型,对测试集中的字符进行识别。选手可以参考物体检测模型SSD或者YOLO来完成。

1.7 本章小节

综上所示,本次赛题虽然是一个简单的字符识别问题,但有多种解法可以使用到计算机视觉领域中的各个模型,是非常适合大家入门学习的。
三种解决思路的难度从低到高,因此建议入门学习的同学可以先学习定长字符识别的思路。在文档之后的内容中我们也会以定长字符识别为例,让大家逐渐入门计算机视觉。

1.8 个人心得

之前只有学过理论基础,未曾动手实践,在这次的竞赛的任务介绍里,让自己对竞赛的数据以及方法有了初步了解,接下来还需多多阅读文献,学习方法,努力认真完成这一次竞赛。
这是我第一次参加人工智能领域的知识竞赛,也是第一次在CSDN写博客。希望通过这次零基础入门竞赛,自己在完成的过程中能有所收获,不论结果如何,学习过程最为重要,让自己了解技术竞赛的具体流程,为以后参加其他竞赛奠定基础。

心跳信号分类预测是一个基于数据挖掘的重要任务,本次回答将介绍在天池-零基础入门数据挖掘比赛中心跳信号分类预测项目中的EDA(探索性数据分析)分析过程和相应代码。 首先,我们需要导入所需的库和数据集,如下所示: ```python import pandas as pd import numpy as np # 导入训练集 train_df = pd.read_csv('train.csv') # 导入测试集 test_df = pd.read_csv('test.csv') ``` 接下来,我们可以进行一些基本的数据探索,如查看数据集的形状和前几行数据等: ```python # 查看训练集形状 train_df.shape # 查看训练集前几行数据 train_df.head() ``` 然后,我们可以对数据集进行一些统计性分析,如计算各个特征的缺失值数量、平均值、标准差等: ```python # 计算训练集特征的缺失值数量 train_df.isnull().sum() # 计算训练集特征的均值 train_df.mean() # 计算训练集特征的标准差 train_df.std() ``` 接下来,我们可以对数据集中的特征进行可视化分析,以便更好地理解数据: ```python import matplotlib.pyplot as plt # 绘制训练集中特征的直方图 train_df.hist(figsize=(10, 10), bins=50) plt.show() # 绘制训练集中特征之间的相关性热图 correlation = train_df.corr() plt.figure(figsize=(10, 10)) plt.imshow(correlation, cmap='hot', interpolation='nearest') plt.colorbar() plt.xticks(np.arange(len(correlation.columns)), correlation.columns, rotation=90) plt.yticks(np.arange(len(correlation.columns)), correlation.columns) plt.show() ``` 最后,我们可以对数据集中的特征进行预处理和特征工程,以提高模型的性能: ```python from sklearn.preprocessing import StandardScaler # 对训练集的特征进行标准化 scaler = StandardScaler() scaled_features = scaler.fit_transform(train_df.drop('target', axis=1)) # 构建新的训练集 new_train_df = pd.DataFrame(scaled_features, columns=train_df.columns[:-1]) new_train_df['target'] = train_df['target'] ``` 以上就是在天池-零基础入门数据挖掘比赛中心跳信号分类预测项目中的EDA分析过程和相应代码。通过探索性数据分析,我们可以更好地理解数据集,并为后续的特征工程和模型训练做好准备。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值