深度学习
炼丹师
刚入坑计算机视觉的菜鸟
展开
-
[深度学习从入门到女装]几种奇怪的卷积
普通卷积原始特征图 20*20 4个通道分别使用6组 4*3*3的卷积进行处理最终得到20*20*6的特征图分组卷积分组卷积就是将特征图的通道进行分组,然后对每一组使用普通卷积进行操作后,得到的所有特征图concat到一起就是最终结果特征图原始特征图 20*20 4个通道,分为两组,每组变为2两个通道分别对两组使用2组3*3的卷积最终得到20*20*4...原创 2020-03-14 16:24:16 · 489 阅读 · 0 评论 -
[李宏毅-机器学习]元学习 meta learning
MAML原创 2020-02-26 17:23:44 · 1201 阅读 · 0 评论 -
[李宏毅-机器学习]序列模型 Sequence to Sequence model
sequence generation每一步随机采样下一词conditional sequence generationdynamic sequence generation(attention)encoder可能无法将所有输入都压缩到一个vector中之前decoder每一步的输入都是一样的,现在让deco...原创 2020-02-25 14:41:19 · 1420 阅读 · 1 评论 -
[李宏毅-机器学习]网络压缩 Network compression
network purningweight purning不适合GPU加速,使用nural purning比较好knowledge distillationparameter quanitizationarchitecture designdynamic computation...原创 2020-02-24 23:59:47 · 790 阅读 · 0 评论 -
[李宏毅-机器学习]终身学习 Life-long learning
用同一个模型能解决很多任务knowledge retention在task1上训练的model,在用于task2的训练后,发现在task1上的performance就下降了让在新任务上学习到的参数,使得其与之前任务上得到的参数的距离不是很远,每个参数都有一个b来控制它的重要程度knowledge transfermo...原创 2020-02-24 20:46:44 · 1648 阅读 · 1 评论 -
[李宏毅-机器学习]解释性机器学习 Explainable ML
local explaination移除图片中的一部分,如果识别结果发现很大变化,则该部分对于识别这个物体很重要计算最后类别的概率那个节点对每个pixel的梯度,梯度大的话就说明该pixel重要global explaination用一个可以被解释的model去解释另一个不可被解释的model...原创 2020-02-23 21:14:09 · 554 阅读 · 0 评论 -
[李宏毅-机器学习]ML攻击与防御 Attack ML model
Attackwhite box 已经拥有模型只更新一次便得到最终的结果black box 不知道模型defense对需要识别的图片使用filter做处理原创 2020-02-22 17:10:17 · 730 阅读 · 0 评论 -
[李宏毅-机器学习]异常检测 Anomaly Detection
with labelwithout label原创 2020-02-22 16:31:46 · 487 阅读 · 0 评论 -
[李宏毅-机器学习]结构化学习 structured learning
structured SVM原创 2020-03-01 23:43:26 · 638 阅读 · 0 评论 -
[李宏毅-机器学习]支持向量机 Support vector machine
在逻辑回归中,loss function的选择hinge loss>1的数据,不是support vector,其他的是support vectorlinear SVM其中1就是间隔,为软间隔为什么w是数据的线性组合?从梯度下降的角度来看,当w初始化为0的时候,就相当于x的线性组合只是当前维度空间的分类结果可能不理想...原创 2020-02-19 22:40:26 · 151 阅读 · 0 评论 -
[李宏毅-机器学习]强化学习 Reinforcement learning
policy-based method原创 2020-02-19 15:35:49 · 193 阅读 · 0 评论 -
[李宏毅-机器学习]集成学习 Ensemble
baggingbagging用于复杂的model,解决over-fitting,例如决策树boosting用于简单的modelAdaboost让新的data分布,在当前分类器上的正确率为50%,再使用新的data分布来训练下一个分类器将分类正确的data权重降低,分类错误的data权重增加gradie...原创 2020-02-18 18:27:40 · 432 阅读 · 0 评论 -
[李宏毅-机器学习]循环神经网络 RNN
双向RNNLSTM将xt(向量)使用线性变换为z(向量),其中z的维度就是cell的数目,将每个维度(scale)单独输入到每个cell得到每个词的词性clipping 梯度裁剪当梯度大于阈值的时候,遗弃或缩小该梯度由于时间的叠加,权重小的变化,会因此梯度剧烈的变动...原创 2020-02-17 18:01:45 · 252 阅读 · 0 评论 -
[李宏毅-机器学习]迁移学习 transfer learning
Model Fine-tuningMulti-task learningdomain-adversarival trainingzero-shot learning网络的输出是种类的特征,然后对这些特征进行embedding,然后按最近的进行分类将word embedding引入...原创 2020-02-16 17:11:08 · 383 阅读 · 0 评论 -
[李宏毅-机器学习]无监督学习 unsupervised learning
Clustering 聚类K-meansHierarchical Agglomerative ClusteringDimension Reduction 降维PCA找到一个方向w1,使得数据x投影在这个方向上,方差最大,这样在这个维度上还可以轻易区分各个数据z1当需要投影到多维的时候,再找一个方向w2,使得x投影在这上方差最大,其中w2和w1是垂直的...原创 2020-02-14 19:58:28 · 1246 阅读 · 0 评论 -
[李宏毅-机器学习]半监督学习 semi-supervised learning
有label的数据很少,大部分是没有label的数据使用unlabel数据来帮助估计数据分布step1:使用初始化的model,对unlabel数据进行每类的概率计算step2:通过对上一步得到unlabel数据的概率,更新model迭代进行,直到收敛用熵来表示label概率的分布情况,是否集中...原创 2020-02-14 13:55:27 · 380 阅读 · 0 评论 -
[李宏毅-机器学习]卷积神经网络CNN
原创 2020-02-13 16:52:19 · 240 阅读 · 0 评论 -
[李宏毅-机器学习]Tips for deep learning
Activation fucntionsigmoid对深层网络效果不好,可能会导致梯度消失问题sigmoid对输入比较大,得到的输出比较小ReLUMaxout自动学习出来需要的activation function梯度下降优化方式AdaGradRMSPropAdagrad改进版,对过去和现在的梯度(不带方向,平...原创 2020-02-13 14:32:18 · 250 阅读 · 0 评论 -
[李宏毅-机器学习]反向传播Backpropagation
原创 2020-02-13 11:51:55 · 267 阅读 · 0 评论 -
[李宏毅-机器学习]逻辑回归Logistic Regression
逻辑回归相对于线性回归,是在y=ax+b上用sigmoid做输出的限制逻辑回归用于分类,线性回归用于拟合数据使用梯度下降获得最终结果为什么逻辑回归不能用均方误差?判别式模式 和 生成式模型判别式模型知道找到类别的判别式中的参数,即直接找到P(C|x)分布而生成式模型需要先对P(x|C)进行假设建模(如高斯模型),然后找到该模型的参数,得到P(x|C)...原创 2020-02-12 23:17:10 · 374 阅读 · 0 评论 -
[李宏毅-机器学习]分类classification
生成式模型每个类别内部的分布假设为高斯分布使用likelihood计算高斯分布的参数使用微分可以求解高斯分布中的方差,不同类别可以共享一个,减少参数量共享方差会得到线性的boundary如果不考虑特征之间的关系,即方差只有对角线,则为Naive Bayes classification,即特征独立分布先验分布可以推出来sigm...原创 2020-02-12 16:48:50 · 516 阅读 · 0 评论 -
[李宏毅-机器学习]梯度下降Graident Descent
AdaGrad每个参数都有自己的learning rate梯度下降最好是一步到达local minim所以最好的step是一阶导数/二阶导数adagrad就是使用原来所有的微分平方和代替二次微分,能够减少二次微分计算量???为什么可以这么做?还不是很懂 如何代替随机梯度下降Stochastic Gradient descent随机...原创 2020-02-11 15:20:55 · 343 阅读 · 0 评论 -
[李宏毅-机器学习]回归Regression
step1:确定函数的形式step2:构建损失函数(评价函数)step3:训练得到最好的function线性回归中的loss为convex,不会陷入local optimal过拟合问题模型能力过于复杂,相当于完全记住了每个训练样例,但是对于测试样例来说,得不到很好的结果正则化 减弱过拟合让function比较平...原创 2020-02-11 13:34:29 · 228 阅读 · 0 评论 -
[深度学习从入门到女装]Scale-Aware Trident Networks for Object Detection
论文地址:Scale-Aware Trident Networks for Object Detection这篇文章是使用改变网络的感受野来提高目标检测的能力,其实感觉就是感觉把deeplab中的block用到目标检测中文章对比了两种主流的结构,第一种就是最原始图像金字塔,把原始图像缩放成不同尺寸,然后对这些不同尺寸的图像进行特征提取,在分别使用这些不同scale的特征进行p...原创 2019-12-21 11:19:57 · 342 阅读 · 0 评论 -
[深度学习从入门到女装]RDSNet: A New Deep Architecture for Reciprocal Object Detection and Instance Segmentatio
论文地址:RDSNet: A New Deep Architecture for Reciprocal Object Detection and Instance Segmentation一篇挺有意思的论文,这篇论文将目标检测和实例分割做成项目促进的方法来提高他们的精准度在普通的instance segmentation的网络中,目标检测和instance segmentation是...原创 2019-12-19 14:19:07 · 1673 阅读 · 0 评论 -
[深度学习从入门到女装]EmbedMask: Embedding Coupling for One-stage Instance Segmentation
论文地址:EmbedMask: Embedding Coupling for One-stage Instance Segmentation一篇使用embedding方法进行one-stage instance segmentation的论文文章中提到,目前进行instance segmentation的方法有两类:第一类:two-stage方法,把instance seg...原创 2019-12-19 13:55:44 · 1383 阅读 · 0 评论 -
[深度学习从入门到女装]YOLACT Real-time Instance Segmentation
论文地址:YOLACT Real-time Instance Segmentation这是一片实例分割的论文,该论文的目的是对原始的one-stage目标检测的框架加上mask的branch实现实例分割,就像Mask R-CNN对Faster R-CNN一样,只不过maskRCNN是two-stage的整体网络框架如上图所示:文章中也提到说one-stage的方法使...原创 2019-12-19 12:06:50 · 256 阅读 · 0 评论 -
[深度学习从入门到女装]detectron2源码阅读-混淆矩阵计算
在detectron2中对于分类问题的混淆矩阵计算部分代码如下://混淆矩阵计算self._conf_matrix = np.zeros((self._N, self._N), dtype=np.int64)output = output["sem_seg"].argmax(dim=0).to(self._cpu_device)pred = np.array(output, dtype...原创 2019-12-03 11:58:19 · 789 阅读 · 0 评论 -
[深度学习从入门到女装]detectron2源码阅读-Hook
在上一篇文章,我们讲述了该框架的Trainer结构,其实该框架中最好玩的应该是Hook的结构,接下来我们详细来讲Hook可以看到在Trainer类中,会存储一个hook的list,list中是不同功能的hook,然后在训练的不同阶段,会挨个调用所有hook,如果该hook在这个阶段需要工作,则进行该hook的运行。那么hook是怎么获取trainer过程中的数据结果之类的呢 ...原创 2019-12-02 17:02:08 · 1019 阅读 · 0 评论 -
[深度学习从入门到女装]detectron2源码阅读-Trainer
detectron2是facebook的开源目标检测框架/tools/train_net.py是进行网络训练和评估的主要文件,我们从这里开始阅读if __name__ == "__main__": #os.environ['CUDA_VISIBLE_DEVICES'] = '0,1' # --config-file --resume --eval-only ...原创 2019-12-02 16:27:54 · 3996 阅读 · 1 评论 -
[深度学习从入门到女装]Multi-scale pyramid of 3D FCNs
论文地址:A multi-scale pyramid of 3D fully convolutional networks for abdominal multi-organ segmentation这是今年发在MICCAI2018上的一篇对于3D FCNs进行改进从而进行腹部多器官分割的文章 作者在这篇文章中使用scale-space pyramid和auto-context改...原创 2018-11-12 21:55:19 · 787 阅读 · 0 评论 -
[深度学习从入门到女装]VGG
本文简要介绍一下VGG网络模型论文:Very Deep Convolutional Networks for Large-Scale Image RecognitionVGG卷积神经网络是牛津大学在2014年提出来的模型。当这个模型被提出时,由于它的简洁性和实用性,马上成为了当时最流行的卷积神经网络模型。它在图像分类和目标检测任务中都表现出非常好的结果。在2014年的ILSVRC比赛中,V...原创 2018-11-05 13:38:53 · 5442 阅读 · 0 评论 -
[深度学习从入门到女装]FCN
论文:Fully Convolutional Networks for Semantic Segmentation本文简单介绍一下FCN模型,并对caffe源码进行阅读对于convolution:output = (input + 2 * padding - ksize) / stride + 1;对于deconvolution:output = (input - 1) *...原创 2018-11-05 15:05:33 · 1521 阅读 · 1 评论 -
[深度学习从入门到女装]Auto-context
论文地址:Auto-Context and Its Application to High-Level Vision Tasks and 3D Brain Image Segmentation论文地址:Auto-context Convolutional Neural Network (Auto-Net) for Brain Extraction in Magnetic Resonance I...原创 2018-11-13 20:34:09 · 2279 阅读 · 0 评论 -
[深度学习从入门到女装]DeepLab
DeepLab v2论文地址:DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs 文章首先提出目前使用深层卷积网络进行语义分割的三点挑战1、特征分辨率的减少文章指出这种问题的出现是因为网络中重复的下采样也就是...原创 2018-11-15 14:04:50 · 2446 阅读 · 0 评论 -
[深度学习从入门到女装]SPP
论文地址:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 提出金字塔pool(spatial pyramid pooling layer)思想由于全连接层需要固定节点数量,因此需要保证进入全连接层时的特征数量一致,卷积层不需要,因此之前的方法都是需要在输入原始图像的时候,对图...原创 2018-11-15 21:27:26 · 8301 阅读 · 0 评论 -
[深度学习从入门到女装]V-Net
论文地址:V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation V-Net相当于对于3D U-Net的变形整体网络结构如图 有几点改进:1、首先网络使用的ResNet中的残差网络(Redisual Network)2、下采样层将MaxPooling全部...原创 2018-11-12 15:40:58 · 1680 阅读 · 0 评论 -
[深度学习从入门到女装]ResNet
论文地址:Deep Residual Learning for Image RecognitionResNet中提出了一种残差网络(Redisual Network)能够使网络层次加深之后还能够有效训练 假设F(x)为之前两个卷积操作得到的输出,现在我们使用一个捷径,把x直接加到F(x)上进行训练,也就是时候我们得到的输出为H(x)=F(x)+x,这么做的作用引用知乎的一段F...原创 2018-11-12 15:52:57 · 448 阅读 · 0 评论 -
[深度学习从入门到女装]U-Net
论文地址:U-Net: Convolutional Networks for Biomedical Image Segmentation论文地址:3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation 上图为U-Net的网络结构整个结构很容易理解,下采用使用2*2的maxPooling,上采...原创 2018-11-12 16:02:01 · 716 阅读 · 0 评论 -
[深度学习从入门到女装]PReLU
论文地址:Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification 本文提出一种可学习的ReLU(Parametric Rectified Linear Unit)的改进版如果ai=0,那么PReLU退化为ReLU;如果ai是一个很小的固定值(如ai=0.0...原创 2018-11-12 16:21:12 · 561 阅读 · 0 评论