1775. 合并果子2 (Standard IO)
Time Limits: 1000 ms Memory Limits: 65536 KB
Description
在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。
每一次合并,多多可以把其中任意不超过k堆果子合并到一起,消耗的体力等于合并在一起的这些堆果子的重量之和。最终合并成为一堆果子。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
例如有5堆果子,数目依次为3,2,1,4,5,每次合并最多3堆。可以先将1、2、3堆合并,新堆数目为6,耗费体力为6。接着,将新堆与剩下的两堆合并,又得到新的堆,数目为15,耗费体力为15。所以多多总共耗费体力=6+15=21。可以证明21为最小的体力耗费值。
Input
输入包括两行,第一行是两个整数n和k(1<=n,k<=10000),表示果子的种类数和每次最多可以合并的堆数。第二行包含n个整数,用空格分隔,第i个整数ai(1<=ai<=20000)是第i种果子的数目。
Output
输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于2^31。
Sample Input
5 3
3 2 1 4 5
Sample Output
21
Data Constraint
Hint
【数据规模】
对于30%的数据,保证有n<=1000:
对于50%的数据,保证有n<=5000;
对于全部的数据,保证有n<=10000。
题解
这是上一题(合并果子)的加强版,多了个k(证明多多聪明了一点)
大体解法与合并果子一致
但是由于k的存在,有可能不能刚好取完,而刚好取完是最佳的方式
于是有两种解决方法,假设多出了m个
要么在取一大堆之前取这m个
要么在取一大堆之后取这m个
显然,根据哈夫曼树,每个叶子节点计算的次数是它的深度
再来看这m个
假如先取这m个,那么这m个深度就多了1
假如后取这m个,那么整棵树深度都多了1
很明显,前者更优
代码
#include<iostream>
#include<cstdio>
#define INF 2147483647
#define N 30001
using namespace std;
long dui[N*2+1],top;
void add(long x)
{ long now;
dui[++top]=x;
for(now=top;dui[now/2]>dui[now]&&now>1;now/=2)
swap(dui[now],dui[now/2]);
}
long qu()
{ long ans=dui[1],now;
bool t=false;
dui[1]=INF;
now=1;
while(!t){
t=true;
if(now*2==top||dui[now*2]<dui[now*2+1]){
if(dui[now]>dui[now*2]){
swap(dui[now],dui[now*2]);
now=now*2;
t=false;
}
}else if(now*2+1<=top)
if(dui[now]>dui[now*2+1]){
swap(dui[now],dui[now*2+1]);
now=now*2+1;
t=false;
}
}
return ans;
}
int main()
{ long n,i,j,k,q,m;
long ans=0;
scanf("%ld%ld",&n,&k);
for(i=1;i<=n;i++){
scanf("%ld",&q);
add(q);
}
m=n%(k-1);
if(m==0)m=k-1;
if(m>1){
q=0;
for(i=1;i<=m;i++)
q+=qu();
ans+=q;
add(q);
}
while(dui[2]!=INF||dui[3]!=INF){
q=0;
for(i=1;i<=k&&dui[1]!=INF;i++)
q+=qu();
ans+=q;
add(q);
}
printf("%ld\n",ans);
return 0;
}