JZOJ 1775. 合并果子2 (Standard IO)

1775. 合并果子2 (Standard IO)

Time Limits: 1000 ms Memory Limits: 65536 KB

Description

  在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。
  每一次合并,多多可以把其中任意不超过k堆果子合并到一起,消耗的体力等于合并在一起的这些堆果子的重量之和。最终合并成为一堆果子。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。
  因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
  例如有5堆果子,数目依次为3,2,1,4,5,每次合并最多3堆。可以先将1、2、3堆合并,新堆数目为6,耗费体力为6。接着,将新堆与剩下的两堆合并,又得到新的堆,数目为15,耗费体力为15。所以多多总共耗费体力=6+15=21。可以证明21为最小的体力耗费值。

Input

  输入包括两行,第一行是两个整数n和k(1<=n,k<=10000),表示果子的种类数和每次最多可以合并的堆数。第二行包含n个整数,用空格分隔,第i个整数ai(1<=ai<=20000)是第i种果子的数目。

Output

  输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于2^31。

Sample Input

5 3
3 2 1 4 5

Sample Output

21

Data Constraint

Hint

【数据规模】
  对于30%的数据,保证有n<=1000:
  对于50%的数据,保证有n<=5000;
  对于全部的数据,保证有n<=10000。

题解

这是上一题(合并果子)的加强版,多了个k(证明多多聪明了一点)

大体解法与合并果子一致
但是由于k的存在,有可能不能刚好取完,而刚好取完是最佳的方式

于是有两种解决方法,假设多出了m个
要么在取一大堆之前取这m个
要么在取一大堆之后取这m个

显然,根据哈夫曼树,每个叶子节点计算的次数是它的深度
再来看这m个
假如先取这m个,那么这m个深度就多了1
假如后取这m个,那么整棵树深度都多了1
很明显,前者更优

代码

#include<iostream>
#include<cstdio>
#define INF 2147483647
#define N 30001
using namespace std;

long dui[N*2+1],top;
void add(long x)
{   long now;
    dui[++top]=x;
    for(now=top;dui[now/2]>dui[now]&&now>1;now/=2)
        swap(dui[now],dui[now/2]);
}
long qu()
{   long ans=dui[1],now;
    bool t=false;
    dui[1]=INF;
    now=1;
    while(!t){
        t=true;
        if(now*2==top||dui[now*2]<dui[now*2+1]){
            if(dui[now]>dui[now*2]){
                swap(dui[now],dui[now*2]);
                now=now*2;
                t=false;
            }
        }else if(now*2+1<=top)
            if(dui[now]>dui[now*2+1]){
                swap(dui[now],dui[now*2+1]);
                now=now*2+1;
                t=false;
            }
    }
    return ans;
}

int main()
{   long n,i,j,k,q,m;
    long ans=0;
    scanf("%ld%ld",&n,&k);
    for(i=1;i<=n;i++){
        scanf("%ld",&q);
        add(q);
    }
    m=n%(k-1);
    if(m==0)m=k-1;
    if(m>1){
        q=0;
        for(i=1;i<=m;i++)
            q+=qu();
        ans+=q;
        add(q);
    }
    while(dui[2]!=INF||dui[3]!=INF){
        q=0;
        for(i=1;i<=k&&dui[1]!=INF;i++)
            q+=qu();
        ans+=q;
        add(q);
    }
    printf("%ld\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值