JZOJ 5286. 【NOIP2017提高A组模拟8.16】花花的森林 (Standard IO)

本文提供了一道NOIP2017提高组模拟赛题目的详细解答,介绍了如何通过预处理原树来高效计算森林中树的直径变化。采用的数据结构与算法包括倍增算法求最近公共祖先、并查集处理森林的合并等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

5286. 【NOIP2017提高A组模拟8.16】花花的森林 (Standard IO)

Time Limits: 1000 ms Memory Limits: 131072 KB

Description

这里写图片描述

Input

这里写图片描述

Output

这里写图片描述

Sample Input

3
1 2 3
1 2
1 3
2
1

Sample Output

6
9
6

Data Constraint

这里写图片描述

Hint

这里写图片描述

题解

我们考虑倒着做,即最开始是一个包含了 n 棵只有一个点的树的森林,然后不断加边,最后得到一棵完整的树。这样我们只需能够快速求出两棵树合并后得到新树的直径即可解决这个问题。

设合并的两棵树是 Ta 和 Tb,合并后形成的新树是 T。记 Ta 的直径的两端点为 ua 和va,Tb 的直径的两端点为 ub 和 vb,则 T 的直径的两端点一定 ∈ {ua, ub, va, vb}(由反证法不难证明)。这样我们只需维护每个块的直径及直径的两端点。在合并两个块时,我们只需暴力求出 4 个点对之间的路径长度,进行比较即可。
在这个过程中我们需要除以原来两块的直径。在模的意义下,除以一个数等价于乘以这个数的逆元。时间复杂度为 O(n2) ,期望得分 60 − 80 分。

我们考虑改进上面的做法,虽然有加边、删边操作,但事实上我们要求的点对之间的路
径长度都是原树上的路径。故我们可以通过对原树进行倍增预处理,每次在 O(logn) 的时间内求得点对间的最近公共祖先(lca),从而得到点对间的路径长度。
时间复杂度为 O(nlogn) ,期望得分 100 分。

代码

#include<cstdio>
#include<algorithm>
#include<vector>
#define ll long long
#define mo 1000000007
#define UP 20
#define N 100010
using namespace std;

struct point{
    long x,y;
    void make(long x,long y)
    {
        this->x=x;
        this->y=y;
    }
}root[N],b[N];

long n;

long fa[N][UP+1],dep[N],father[N],w[N],a[N],len[N],c[N],out[N];
void init()
{   long i,j;
    for(i=1;i<=n;i++){
        for(j=1;(1<<j)<=dep[i];j++)
            fa[i][j]=fa[fa[i][j-1]][j-1];
        father[i]=i;
        root[i].make(i,i);
        w[i]=a[i];
    }
}

long lca(long x,long y)
{   long up,xx=x,yy=y;
    if(dep[x]>dep[y])
        swap(x,y);
    for(up=UP;up>=0;up--)
        if(dep[y]-(1<<up)>=dep[x])
            y=fa[y][up];
    up=UP;
    while(x!=y){
        while(up>=0&&fa[x][up]==fa[y][up])
            up--;
        if(up<0)break;
        x=fa[x][up];
        y=fa[y][up];
        up--;
    }
    if(x==y)
        return len[xx]+len[yy]-2*len[x]+a[x];
    else
        return len[xx]+len[yy]-2*len[fa[x][0]]+a[fa[x][0]];
}

vector<long>map[N];
bool ok[N];
void dfs(long now)
{   long i,to,next;
    ok[now]=true;
    for(i=0;i<map[now].size();i++){
        to=map[now][i];
        if(!ok[to]){
            fa[to][0]=now;
            dep[to]=dep[now]+1;
            len[to]=a[to]+len[now];
            dfs(to);
        }
    }
}

long ksm(long a,long b)
{
    if(b>1)
        if(b&1)
            return (ll)ksm((ll)a*a%mo,b>>1)*a%mo;
        else
            return ksm((ll)a*a%mo,b>>1);
    else return a;
}

long cha(long x)
{
    return (father[x]==x)?x:father[x]=cha(father[x]);
}
void bin(long x,long y)
{
    father[cha(x)]=cha(y);
}

int main()
{   long i,xx,yy,r1,r2,r3,r4,w1,w2,w3,w4,maxx;
    long long ans=1;
    scanf("%ld",&n);
    for(i=1;i<=n;i++){
        scanf("%ld",&a[i]);
        ans=ans*a[i]%mo;
    }
    out[n]=ans;
    for(i=1;i<n;i++){
        scanf("%ld%ld",&xx,&yy);
        b[i].make(xx,yy);
        map[xx].push_back(yy);
        map[yy].push_back(xx);
    }
    dfs(1);
    init();
    for(i=1;i<n;i++)
        scanf("%ld",&c[i]);
    for(i=n-1;i>=1;i--){
        xx=cha(b[c[i]].x);
        yy=cha(b[c[i]].y);
        r1=root[cha(xx)].x;
        r2=root[cha(xx)].y;
        r3=root[cha(yy)].x;
        r4=root[cha(yy)].y;
        w1=lca(r1,r3);
        w2=lca(r1,r4);
        w3=lca(r2,r3);
        w4=lca(r2,r4);
        maxx=max(w1,max(w2,max(w3,max(w4,max(w[xx],w[yy])))));
        ans=ans*ksm(w[xx],mo-2)%mo*ksm(w[yy],mo-2)%mo*maxx%mo;
        bin(xx,yy);
        if(maxx==w1)
            root[cha(xx)].make(r1,r3);
        if(maxx==w2)
            root[cha(xx)].make(r1,r4);
        if(maxx==w3)
            root[cha(xx)].make(r2,r3);
        if(maxx==w4)
            root[cha(xx)].make(r2,r4);
        if(maxx==w[xx])
            root[cha(xx)].make(r1,r2);
        if(maxx==w[yy])
            root[cha(xx)].make(r3,r4);
        w[cha(xx)]=maxx;
        out[i]=ans;
    }
    for(i=1;i<=n;i++)
        printf("%ld\n",out[i]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值