自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1025)
  • 收藏
  • 关注

原创 为什么建议你用Jupyter?

Jupyter主要是用来做数据科学,其包含数据分析、数据可视化、机器学习、深度学习、机器人等等,任何Python数据科学第三方库都能在Jupyter上得到很好的应用和支持。其实它是集编程、笔记、数据分析、机器学习、可视化、教学演示、交互协作等于一体的超级web应用,而且支持python、R、Julia、Scala等超40种语言。在产品上,Jupyter不仅有简洁的Notebook ,还有工作台式的Lab,甚至线上平台化部署的Hub,对个人、团队、企业都可以完美支持。6、课堂编程相关的内容展示、实验。

2025-12-28 16:12:44 178

原创 为什么我不建议你再写SQL取数了?

最近一直在摸索如何用AI解决实际的业务问题,发现AI在调用数据库和处理数据上有些发挥的空间,于是我做了一个自动化数据处理的智能体,名叫“数分神器”,有以下3个核心功能:1、支持连接SQLite数据库,并实现抽取、写入的功能2、支持SQL、Python处理数据,按要求进行数据清洗、转换、透视等3、支持导出数据报告,并生成matplotlib图表这3个功能能涵盖ETL和数据分析的基本工作,也就是说AI可以替代这些初级岗位,而且能把活干的更高效、漂亮。

2025-12-28 16:11:59 359

原创 为什么这么多人质疑SQLite数据库?

比如在Trae里,SQLite MCP,能直接从集市里添加,然后在配置信息里输入前面的my_db.db数据库路径地址,保存即可。你也可以在Python对SQLite数据库进行操作,会用到SQLite库,这是Python标准库,不需要额外安装。说回来,SQLite是一个轻量化的开源数据库,它没有服务器,无需复杂的配置安装,就可以直接用,非常适合单机场景。所以说SQLite的应用场景非常广,绝对是良心数据库,体积小、安装快、无需配置,简直就是数据库中的小钢炮。最近看到有个问题:SQLite用的人多吗?

2025-12-28 16:11:18 148

原创 n8n、dify、coze,它更强?

现在主流的工作流工具有三家,分别是n8n、dify、coze,前两者出生就是开源的,coze是今年刚开源,从Github star数来看,n8n 150K排第一,dify紧随其后117k排第二,coze由于开源时间较晚只有18k。如果有评判标准,那Github的star或许是较为客观的一种方式,咱们就以这个顺序来讲讲这三种工作流的功能和优势。

2025-12-28 16:08:28 198

原创 爬虫到底难在哪里?

我本身是做跨境的,所以经常需要分析数据,所以自己就搭了一个python+亮数据解锁器的自动化采集程序,请求网页用到的是python requests,处理反爬用的亮数据网页解锁api,它是专门用来采集跨境平台的采集工具,可以处理各种反爬机制,能直接请求到结构化的数据,比较省事。爬虫其实最难不是解析html数据,而是请求http过程中遇到的各种反爬限制,不要以为爬虫只是HTTP请求->HTML解析->结构化数据储存,这几步看似简单,实则是爬与反爬的博弈,魔高一尺道高一丈。

2025-12-28 16:07:19 227

原创 我常用的5个效率小工具,强烈推荐

俗话说“工欲善其事,必先利其器”,真的一点没错,用对工具,你的幸福指数会立马提升。我平时主要的工作是看数据、撸代码、写博文,这三样事情都得靠电脑完成,几乎占据了我90%的时间,因此用一些提升效率的小工具非常有必要。这些小工具既包括客户端软件、APP,也有网站、插件等,给我的工作带来了很大的帮助。

2025-12-25 17:08:48 699

原创 我常用的7款免费AI工具,强烈推荐

这两年AI大模型工具喷涌而出,踏足各种使用场景,比如聊天、图像、视频、音乐等等这里列举了7款免费的AI工具,囊括了各种日常应用,其中大部分简单易用,适合无门槛操作。

2025-12-25 17:07:59 317

原创 聊一些鲜为人知但有趣的Python特性,附案例

之前有个小学弟毕业论文用到Python做NLP,学了半个月跟我说Python真的太良心了,语法相对Java简洁很多。我笑了笑说那是你用的太少,没遭遇到让人直呼f*ck的特性。确实,对于初学者来说Python的静态类型、强制缩进、解释性、强类型等特质,让它变得像英语短句那样容易理解,也不需要你有很强的抽象思维能力。但其实越往深里学,你会发现Python中有很多精心设计的小细节,会让新手觉得费解,甚至不解。这将会返回True,确实引用自同一对象。但如果你执行下面代码,会得到不一样的结果。它返回的是。

2025-12-24 16:36:20 341

原创 新手必须掌握的几个Python爬虫库,非常实用!

Python中有非常多用于网络数据采集的库,功能非常强大,有的用于抓取网页,有的用于解析网页,这里介绍6个最常用的库。

2025-12-24 16:35:19 1116

原创 这个科研绘图Python库非常强大,你用过吗?

matplotlib是Python中最底层的绘图库,它支持二维、三维、交互式等各种图表,而且通过元素化的模式能设计图表的任何细节,定制化程度非常高,很多可视化库都是基于matplotlib做二次开发的,或者是matplotlib的拓展,比如seaborn、pandas、mplfinance、DNA Features Viewer等,它们能应用于数据科学、金融量化、生物医学等各领域科研绘图。另外,matplotlib有一个示例集,里面有各式各样的专业图表,有的只需要换换数据就能为自己所用。

2025-12-23 21:46:23 208

原创 pandas实现sql的case when查询,原来这么简单!

sql中的case when的功能是实现单列或者多列的条件统计,其实Pandas也可以实现的,比如万能的apply方法,就是写起来复杂一些,没有sql case when那么直观。举个例子,一张考试成绩的表scores,有语文和数学的得分,现在给考生综合打分,两门都在90以上打A,都在80-90之间打B,其他则打C。逻辑也很简单,判断函数实现多列的判断条件,apply将该判断函数应用到数据集上,就能实现类似sql case when的功能。这里如果用sql来查询的话,使用case when就很简单明了。

2025-12-23 21:44:47 294

原创 Claude限制咱们使用,其实是一步错棋

今年老美出了很多牛逼哄哄的大模型,比如Claude 4.5 、Gemini 3 Pro,但无一例外都限制咱们使用,Anthropic甚至不给国内企业接入其API服务,导致很多Vibe Coding产品一下子性能下降不少。这是好事还是坏事?短期是有影响,特别是一些依赖Claude模型的Agent、RAG、Code产品,但长期反而会帮了国内AI产品。因为一个人越饥饿,越会自己寻找食物,很多强大是被“饿”出来的。

2025-12-22 15:58:31 246

原创 我常用的6种爬虫软件,值得收藏~

公众号后台经常有人私信要抓取某某网页数据,该怎么办?巧妇难为无米之炊,确实现在数据采集已经是最最常见的业务需求了,所以很多人想学python来写爬虫,以为爬虫只是HTTP请求->HTML解析->结构化数据储存,但其实爬虫远比想象的难。比如想研究跨境电商商品数据,看看国外的流行趋势,好不容易写个爬虫,结果网站全是验证码,甚至连网页都打不开。

2025-12-22 15:29:32 2069

原创 pandas中基于范围条件进行表连接

但在有些情况下,我们可能需要基于一些“特殊”的条件匹配,来完成左右表之间的表连接操作,譬如对于下面的示例数据框。等方法,可以根据左右表连接依赖字段之间对应值是否相等,来实现常规的表连接。而除了上面的方式以外,我们还可以基于之前的文章中给大家介绍过的。表连接是我们日常开展数据分析过程中很常见的操作,在。之间相差不超过7天,这样的条件来进行表连接,,直接基于范围比较进行连接,且该方式还支持。进行连接,再在初步连接的结果表中基于。

2025-12-21 11:53:22 360 1

原创 基于matplotlib轻松绘制漂亮的表格

还有很多高级进阶的使用方法,譬如单元格图片渲染、自定义单元格绘制内容等,下面的几个例子就是基于。,但是由于参数复杂,且默认样式单一简陋,想基于它绘制出美观的表格需要花费不少功夫。作为数据可视化的强力工具,可以帮助我们自由创作各式各样的数据可视化作品,其中。,我们可以分别对表头区域单元格、数据区域单元格进行样式设置,接受。参数,可细粒度地对每一列进行自由的样式定义,其中每个。的基础使用很简单,在已有数据框的基础上,直接调用。则可以分别控制各个部分分割线的样式,支持。中最强大的地方在于,其通过配置由。

2025-12-21 11:52:41 487

原创 使用Python selenium爬虫领英数据,并进行AI岗位数据挖掘

随着OpenAI大火,从事AI开发的人趋之若鹜,这次使用Python selenium抓取了领英上几万条岗位薪资数据,并使用Pandas、matplotlib、seaborn等库进行可视化探索分析。亮数据是一家提供网络数据采集解决方案的网站,它拥有全球最大的代理IP网络,覆盖超过195个国家和地区,拥有超过7200万个不重复的真人IP地址。但领英设置了一些反爬措施,对IP进行限制封禁,因此会用到IP代理,用不同的IP进行访问,我这里用的是亮数据的IP代理。AI岗位中位数年薪18W美金,最高50w以上。

2025-12-21 11:51:45 518

原创 这个可视化软件图表真的好看,强烈推荐~

这是BI软件的立身之本,tableau的Hyper数据引擎技术、VizQL可视化技术,非常好的将速度、性能、美观综合起来,满足BI软件的核心需求。熟悉BI可视化的同学都知道,现在企业届常用的BI工具主要是Power BI、FineBI、Tableau等,其中以Tableau可视化功能最为突出,做出来的图表非常好看。如果Tableau仅仅是个show的可视化工具,必然不会有这么高的市值,资本市场的眼睛是雪亮的。在Gartner 最新的BI排名众,Tableau仅次于PowerBI,是BI软件中的头部。

2025-12-21 11:51:04 271

原创 Claude / Gemini限制咱们使用,其实是一步错棋

今年老美出了很多牛逼哄哄的大模型,比如Claude 4.5 、Gemini 3 Pro,但无一例外都限制咱们使用,Anthropic甚至不给国内企业接入其API服务,导致很多Vibe Coding产品一下子性能下降不少。这是好事还是坏事?短期是有影响,特别是一些依赖Claude模型的Agent、RAG、Code产品,但长期反而会帮了国内AI产品。因为一个人越饥饿,越会自己寻找食物,很多强大是被“饿”出来的。

2025-12-21 00:01:06 358

原创 什么是自助式BI?和传统BI(商业智能)相比有何优劣势?

Python适合多数非程序员群体编程,自助式BI也更适合普通业务人员上手,这些BI都有友好的软件客户端,能更容易地进行可视化分析,而且一般是高频的分析场景,包括研究统计分布、制作图表、搭建看板、上传报表等,代表BI工具有Tableau、Java适合专业程序员开发软件,传统BI同样需要程序员来开发,需要懂一些前端、数据库、ERP知识,因为传统BI核心任务是搭建看板和大屏,不是那么高频的需求,但追求稳定、大气、酷炫,能支持大数据的接入,起码在国内是这样。等,还有些用BI软件搭建,比如。

2025-12-17 15:47:26 372

原创 为什么你写的Python爬虫脚本老是掉链子?

现在大型网站的反爬策略越来越高明了,不仅是对IP访问频率、User-Agent请求头进行异常识别,还会分析IP地址、浏览器指纹、JS动态加载、API逆向、行为模式等方式各种设卡,动不动跳出五花八门的验证码,非常难搞。怎么应对反爬是个系统性问题,需要采取多种策略,而且涉及到法律法规,得遵守网站的robot协议,做一些自动化检测、采集少量公开数据没啥问题,对网站造成干扰的事情可不能干。我觉得使用Python爬虫有6个技巧比较重要,可以更稳定的采集数据。

2025-12-17 15:23:22 1087

原创 selenium采集数据怎么应对反爬机制?

亮数据还有网页解锁功能,即Web Unlocker ,相当于把负责反爬处理机制放到一个接口里,你只需向Web Unlocker发送目标 URL,所有复杂的解锁过程(包括处理反机器人措施、执行 JavaScript、管理 cookie 和会话、轮换 IP 地址)都在后台自动完成,你会收到目标URL的完整 HTML或JSON响应。对于爬虫而言,最难的不是解析网页,而且应对反爬机制,比如动态网页、IP封禁、人机验证等等,这是爬虫工具没法自行解决的。如何使用Selenium抓取网页呢?可以看以下的代码示例。

2025-12-16 14:17:10 893

原创 说真的,你可能误会Pandas了

pandas是基于numpy数组来计算的,其实本身有优势,处理小批量数据集(百万行以下,1GB以内)效率是完全可以接受的,相比其他的数据处理库其实差异不大,因为1GB以内的容量对电脑内存的占用并不大,且单核处理起来也不吃力,这时候Pandas的速度和便捷性综合优势能发挥到最大。所以可以用pandas自带的分块加载(chunksize)的方式,将大文件分为n个小文件,分批去读取并处理,这样可以把几GB的大文件拆解成N个几十M的小文件,pandas处理起来就毫无压力。如何优化Pandas的速度呢?

2025-12-16 14:12:49 425

原创 使用亮数据采集复杂网页数据,附详细代码

亮数据平台提供了强大的数据采集工具,比如Web Scraper IDE、亮数据浏览器、SERP API等,能够自动化地从网站上抓取所需数据,无需分析目标平台的接口,直接使用亮数据提供的方案即可安全稳定地获取数据。网络爬虫是一种常见的数据采集技术,与屏幕抓取不同,屏幕抓取只复制屏幕上显示的像素,网络爬虫提取的是底层的HTML代码,以及存储在数据库中的数据。你可以使用Python编写爬虫代码实现数据采集,也可以使用自动化爬虫工具,这些工具对爬虫代码进行了封装,你只需要配置下参数,就可以自动进行爬虫。

2025-12-15 21:12:52 832

原创 我常用的7个数据采集工具,适合新手爬虫

它提供了自动网站解锁功能,能够应对动态加载、验证码、IP限制等各种反爬虫机制,而且支持如Puppeteer、Playwright和Selenium等多种爬虫工具,在亮数据内置的无界面浏览器上进行数据的采集,成功率非常高。不管是文本、图片、视频亦或表格,八爪鱼都能抓,而且它还提供了非常丰富的采集模板,比如电商、新闻、短视频等主流平台全包含,它已经帮你配置好了流程,一键可以实现爬虫。它的优势是基于Python生态,灵活性高,支持分布式爬虫和异步请求,而且有多种扩展,能满足复杂采集需求,适合做企业级爬虫部署。

2025-12-15 21:11:03 2534

原创 使用Streamlit搭建Excel批处理应用,100个表格秒级拼接

Excel是工作中最常用的数据处理工具,没有之一,从技术大厂资深程序员到生产车间业务员,每天都在处理大量的Excel表格,可是很少有人真的精通Excel,连vlookup、多表拼接、格式转化这样的批处理任务都很难搞定,只能手工一个个的点击。多个Excel文件批量转为CSV格式,导入多个Excel文件,批量转化后,就会得到内容相同的CSV文件,不同的sheet会单独导出一个CSV文件。该应用会进行结构一致检查,没问题就会执行拼接,并给到结果预览,然后支持下载拼接结果,得到一张拼接好的Excel表。

2025-12-15 21:08:14 843

原创 Numpy基础20问

对0、1、2轴进行索引,如果取o轴第2个元素、1轴第0个元素、2轴第3个元素,那么索引形式就为[2,0,3]。是将二维数组转换成三维数组,参数个数代表要转换的维度,参数数字从左到右分别表示0轴、1轴、2轴的元素数量。例如,三维数组形状为(x,y,z),分别代表:0轴有x个元素、1轴有y个元素,2轴有z个元素。如果取o轴前2个元素、1轴前1个元素、2轴后2个元素,那么切片形式就为[:2,:1,-2:]。如果相同维度的数组进行运算,其shape相同,那么广播就是两个数组相同位数的元素进行运算。

2025-12-14 19:28:42 507

原创 高效的5个pandas函数,你都用过吗?

之前为大家介绍过10个高效的pandas函数,颇受欢迎,里面的每一个函数都能帮我们在数据分析过程中节省时间。比如说dataframe中某一行其中一个元素包含多个同类型的数据,若想要展开成多行进行分析,这时候explode就派上用场,而且只需一行代码,非常节省时间。index:指定是否返回df中索引字节大小,默认为True,返回的第一行即是索引的内存使用情况;object类型比较宽泛,如果可以确定为具体数据类型,则不建议用object。顾名思义,replace是用来替换df中的值,赋以新的值。

2025-12-14 19:28:04 828

原创 Python安装库太慢?配置好这个速度飞起

先来了解下pip,pip是一个非常流行的python包管理工具,在命令行中只需要输入pip install package_name,就可以自动安装第三方库。然而pip是从pypi中下载库文件的,pypi是python官方第三方库的仓库,它用的是国外的服务器,下载速度自然很慢。国内的这些镜像网站拥有非常多的开源工具,不光是pypi,你还可以在里面下载mysql、anaconda、ubuntu、nodejs等主流软件,速度杠杠的。其实这样不太方便,若想省力气,那就要永久配置镜像源,配置好后只要输入。

2025-12-14 19:27:29 396

原创 Superset,基于web的开源BI工具,github三万star

官方对Superset的介绍是: - 通过 NVD3/D3 预定义了多种可视化图表,满足大部分的数据展示功能。- 一个可扩展的、高粒度的安全模型,允许复杂的规则对谁可以访问哪些产品特征和数据集。BI工具是数据分析的得力武器,目前市场上有很多BI软件,众所周知的有Tableau、PowerBI、Qlikview、帆软等,其中大部分是收费软件或者部分功能收费。这些工具一通百通,用好一个就够了,重要的是分析思维。相比较集成好的软件,Superset是有些使用门槛的,对新手没那么友好,不过它免费呀,免费真香。

2025-12-14 19:26:56 267

原创 numba,让你的Python飞起来!

以上代码是一个python函数,用以计算numpy数组各个数值的双曲正切值,我们使用了numba装饰器,它将这个python函数编译为等效的机器代码,可以大大减少运行时间。python由于它动态解释性语言的特性,跑起代码来相比java、c++要慢很多,尤其在做科学计算的时候,十亿百亿级别的运算,让python的这种劣势更加凸显。使用numba非常简单,只需要将numba装饰器应用到python函数中,无需改动原本的python代码,numba会自动完成剩余的工作。传入numba装饰器jit,编写函数。

2025-12-12 16:39:56 325

原创 一文搞懂Python匿名函数

语法结构简单,不用使用def 函数名(参数名):这种方式定义,直接使用lambda 参数:返回值 定义即可。可以直接在使用的地方定义,如果需要修改,直接找到修改即可,方便以后代码的维护工作。也就是说,lambda用来表示匿名函数,可以传入多个参数,但只能有一个表达式。以上对匿名函数作了解释,也举了一些例子用以说明。那么,匿名函数的优点是什么呢?不用取名称,因为给函数取名是比较头疼的一件事,特别是函数比较多的时候。你也可以给匿名函数传入一个参数:​​​​​​​。暂且把def定义的函数叫作“有名函数”,

2025-12-12 16:38:16 177

原创 一文搞懂Python迭代器和生成器

从形式上来看,生成器表达式和列表推导式很像,仅仅是将列表推导式中的[]替换为(),但是两者差别挺大,生成器表达式可以说组合了迭代功能和列表解析功能。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。在Python中,这种一边循环一边计算的机制,称为生成器(Generator)。所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?但是,受到内存限制,列表容量肯定是有限的。

2025-12-11 17:48:23 696

原创 那些不为人知的优秀python可视化库

说到python可视化库,大家可能第一时间想到。matplotlib算是python比较底层的可视化库,可定制性强、图表资源丰富、简单易用、并且达到出版质量级别。除了matplotlib还有其它几十种优秀的可视化库哦!

2025-12-11 17:46:56 1323

原创 工作流引擎哪家好?

Coze是字节开发的一个商业Agent工作流系统,它不同n8n、dify,只支持在Coze线上搭建Agent工作流,企业似乎可以私有化部署,而且由于模块化设计,所以Coze足够简单。其实从热度来说,Dify基本是和n8n同样流行的AI流程工具,而且它是国内团队开发的,公司在苏州,创始人之前在腾讯做过,后来一直创业,做过不少好产品。、编程语言、数据库、云存储等,你可以搭建一套属于自己的Agent,帮你干活,而且它会思考、纠错,真正的像一个AI员工。,前两者出生就是开源的,coze是今年刚开源,从。

2025-12-09 16:23:45 730

原创 pdf如何提取表格?

是专门用来处理PDF的第三方库,完全开源和免费,它最核心的功能是提取PDF的文本和表格,支持保留段落、换行、空格的原始格式,不会像某些库那样把不同区域的文本混在一起,是我体验下来最好用的PDF处理库。虽然在Python上使用pdfplumber提取PDF文本表格并不难,但这仅限于懂Python的同学,如果你不会Python,那也是没办法用pdfplumber操作PDF,只能求助于付费软件。我突发奇想用pdfplumber搭建了个PDF文本表格提取应用,可以实现拖拉拽实现操作,不需要任何的代码。

2025-12-09 16:23:10 669

原创 现在毕业大学生数学水平能否秒高斯、黎曼、笛卡尔、庞加勒?

水平到创新中间隔着天堑,每一个在各自领域有着伟大创新的人,其水平都代表着这个领域的最高峰。同样,你会用正态分布解数学题,却不知道正态分布还有个名字叫作“高斯分布”。有人问:现在毕业大学生数学水平能否秒高斯、黎曼、笛卡尔、庞加勒?不是说你会解几个万有引力物理题,就能比牛顿厉害。人类群星闪耀时,闪耀的是天才般的创意和成就。让我想起一句话,萤虫之光岂敢与日月争辉。解题不叫物理水平,那叫习得,叫熟能生巧。第一个发现万有引力定律那才叫物理水平。还有一种积分叫作“黎曼积分”。还有一种坐标系叫作“还有一种不等式叫作“

2025-12-08 15:03:56 151

原创 MacBook为什么说最适合程序员进行编程使用呢?

以上是我用Mac下来的几点感受,但这仅代表Mac在编程开发上的优势,也包括设计、自媒体等,如果是普通场景使用电脑,比如日常办公、娱乐消遣、打游戏等,其实Windows更好用。4、Mac系统更加流畅,这和iPhone一样,哪怕是8G/256G的丐版,打开五六个IDE也不会卡,对于编程来说,卡顿或者无缘无故死机真的没法忍受。程序员很多系统都是基于Linux开发的,除了游戏开发、客户端开发之外,Mac开发的东西能无缝部署到Linux,不需要处理兼容的问题。等IDE的速度更快,其他软件也一样。

2025-12-08 15:03:22 242

原创 爬虫为什么难?一文解析数据采集奥秘

最近用到一个非常简单的高级爬虫工具,亮数据的Scraper APIs,你可以理解成一种爬虫接口,它帮你绕开了IP限制、验证码、加密等问题,无需编写任何的反爬机制处理、动态网页处理代码,后续也无需任何维护,就可以“一键”获取Tiktok、Amazon、Linkedin、Github、Instagram等全球各大主流网站数据。1、在云上向Tiktok发出http数据请求 2、模拟登陆、配置IP代理、动态访问、识别验证码、破解加密数据等 3、解析获取的HTML,提取重要的字段,输出为json格式。

2025-12-08 15:02:08 2606

原创 这三个爬虫工具,适合编程小白

网络爬虫是一种常见的数据采集技术,你可以从网页、 APP上抓取任何想要的公开数据,当然需要在合法前提下。爬虫使用场景也很多,比如:搜索引擎机器人爬行网站,分析其内容,然后对其进行排名,比如百度、谷歌价格比较网站,部署机器人自动获取联盟卖家网站上的价格和产品描述,比如什么值得买市场研究公司,使用爬虫从论坛和社交媒体(例如,进行情感分析)提取数据。与屏幕抓取不同,屏幕抓取只复制屏幕上显示的像素,网络爬虫提取的是底层的HTML代码,以及存储在数据库中的数据。

2025-12-08 15:01:04 2111

原创 计算机学院的学生该怎样提高自己的编程能力?

对于编程新手尤其计算机在读学生来说,提升编程能力面临三座大山,首先现在很多计算机专业学生几年下来代码量非常之少,有的都不知道是何物。要知道编程是最能体验prctice make perfect的技能之一,在前期积累的阶段,往往要大量的去刷题,才能在面试实战时显得游刃有余。其次现在中文网站好的技术文档资源非常稀缺,导致学生遇到编程难题不容易找到答案。最后对于搞编程的学生来说,光是学校里的课程设计作业还有论文是远远不够的,普遍缺乏开发项目的锤炼,不知道什么是优秀的代码和设计,这样就很难提升编程能力。

2025-12-04 23:47:23 1261

100个Github Python项目

整理了100个在Github上热门的Python项目,包含数据科学、web应用、游戏、可视化、机器学习、自动化等等

2024-04-22

16个matplotlib绘图技巧

包含了Python Matplotlib库可视化绘图的各种技巧,如标题、文本、注释、坐标轴、图例、颜色等等

2024-04-22

60个Numpy函数和方法解析

Python第三方库Numpy的函数和方法解析

2024-04-22

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除