pytorch计算flops, params,有两个input

该博客使用PyTorch库,通过CUDA设备进行模型运算加速。首先检查GPU是否可用,然后定义网络模型并将其转移到GPU上。接着,利用torchprofile模块对模型进行输入,并计算FLOPs和参数数量,以评估模型的计算复杂度和内存需求。
摘要由CSDN通过智能技术生成
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
net = D()  # 定义好的网络模型
if torch.cuda.is_available():
    net.cuda()
input1 = torch.randn(1, 3, 512, 512)#输入到模型时,模型要加一个维度x = x.unsqueeze(0)
input1 = input1.to(device)
#
input2 = torch.randn(1, 3, 512, 512)
input2 = input2.to(device)

flops, params = profile(net,inputs=(input1,input2))
print('flops: ', flops, 'params: ', params)


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值