device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
net = D() # 定义好的网络模型
if torch.cuda.is_available():
net.cuda()
input1 = torch.randn(1, 3, 512, 512)#输入到模型时,模型要加一个维度x = x.unsqueeze(0)
input1 = input1.to(device)
#
input2 = torch.randn(1, 3, 512, 512)
input2 = input2.to(device)
flops, params = profile(net,inputs=(input1,input2))
print('flops: ', flops, 'params: ', params)
pytorch计算flops, params,有两个input
于 2022-05-12 10:58:50 首次发布
该博客使用PyTorch库,通过CUDA设备进行模型运算加速。首先检查GPU是否可用,然后定义网络模型并将其转移到GPU上。接着,利用torchprofile模块对模型进行输入,并计算FLOPs和参数数量,以评估模型的计算复杂度和内存需求。
摘要由CSDN通过智能技术生成