排序:
默认
按更新时间
按访问量

PCA+SVM

简介:主成分分析 ( Principal Component Analysis , PCA )或者主元分析。是一种掌握事物主要矛盾的统计分析方法,它可以从多元事物中解析出主要影响因素,揭示事物的本质,简化复杂的问题。计算主成分的目的是将高维数据投影到较低维空间。 对于银行后台存储的大量数据进...

2017-12-30 07:44:01

阅读数:55

评论数:0

14 MATLAB主成分分析

转载  原文博客  http://blog.csdn.net/MATLAB_matlab/article/details/59483185?locationNum=10&fps=1 更多MATLAB数据分析视频请点击,或者在网易云课堂上搜索《MATLAB数据分析与统计》 http:/...

2017-12-30 07:32:49

阅读数:120

评论数:0

机器学习之旅---SVM分类器

本次内容主要讲解什么是支持向量,SVM分类是如何推导的,最小序列SMO算法部分推导。 最后给出线性和非线性2分类问题的smo算法matlab实现代码。 一、什么是支持向量机(Support Vector Machine) 本节内容部分翻译Opencv教程: http://docs...

2017-12-02 22:40:39

阅读数:363

评论数:0

机器学习经典算法详解及Python实现--K近邻(KNN)算法

转载http://blog.csdn.net/suipingsp/article/details/41964713 (一)KNN依然是一种监督学习算法 KNN(K Nearest Neighbors,K近邻 )算法是机器学习所有算法中理论最简单,最好理解的。KNN是一种基于实例的学习,...

2017-10-07 16:14:20

阅读数:105

评论数:0

逻辑回归模型(Logistic Regression, LR)基础

转载http://www.cnblogs.com/sparkwen/p/3441197.html 逻辑回归(Logistic Regression, LR)模型其实仅在线性回归的基础上,套用了一个逻辑函数,但也就由于这个逻辑函数,使得逻辑回归模型成为了机器学习领域一颗耀眼的明...

2017-10-07 16:12:39

阅读数:90

评论数:0

机器学习之期望最大算法(EM算法)

EM是我一直想深入学习的算法之一,第一次听说是在NLP课中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法。在之后的MT中的词对齐中也用到了。在Mitchell的书中也提到EM可以用于贝叶斯网络中。 下面主要介绍EM的整个推导过程。 1. Jensen不等式     ...

2017-04-19 17:41:58

阅读数:348

评论数:0

机器学习之最大似然算法

机器学习十大算法之一:EM算法。能评得上十大之一,让人听起来觉得挺NB的。什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题。神为什么是神,因为神能做很多人做不了的事。那么EM算法能解决什么问题呢?或者说EM算法是因为什么而来到这个世界上,还吸引了那么多世人的目光。 ...

2017-04-19 17:40:40

阅读数:254

评论数:0

拉普拉斯近似算法小结

序     在机器学习中,经常遇到需要对复杂分布进行近似的情况。目前常用的近似算法主要有三种:拉普拉斯近似、变分近似、Gibbs采样。其中拉普拉斯近似算法是用一个高斯分布来近似原始分布,当原始分布比较简单的时候效果会较好。 目标: 用一个高斯分布近似一组连续变量上的概率密度分布。...

2017-04-19 15:24:50

阅读数:315

评论数:0

贝叶斯学习及共轭先验

今天的主要任务是来理解共轭先验以及贝叶斯学习。最近在研究主题模型,里面用到了一些,另外在机器学习中,贝叶斯学习是重要的一个方向,所以有必要学习和掌握。     Contents      1. 贝叶斯学习    2. Beta分布及共轭先验     ...

2017-04-18 19:52:18

阅读数:123

评论数:0

机器学习——深度学习(Deep Learning)

Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,最近研究了机器学习中一些深度学习的相关知识,本文给出一些很有用的资料和心得。 Key Words:有监督学习与无监督学习,分类、回归,密度估计、聚类,深度学习,Spars...

2017-04-15 07:12:13

阅读数:138

评论数:0

机器学习中的范数规则化之(一)L0、L1与L2范数

机器学习中的范数规则化之(一)L0、L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09          今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化。我们先简单的来理解下常用的L0、L1、L2和核范数规则化...

2017-04-14 09:49:14

阅读数:432

评论数:0

Neural Network Toolbox 使用笔记1:数据拟合

Neural Network Toolbox为各种复杂的非线性系统的建模提供多种函数和应用程序。该工具箱提供各种监督学习模型:前向反馈,径向基核函数和动态网络等模型。同时也提供自组织图和竞争层结构(competitive layers)的非监督学习模型。该工具箱具有设计、训练、可视化与仿真神经网络...

2017-04-14 08:38:06

阅读数:263

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭