- 博客(4)
- 收藏
- 关注
原创 机器学习基础--1
机器学习类型1.预测 包括监督学习(根据数据预测输出)和无监督学习(生成数据)辅助人类操作的任务2.决策 强化学习(在动态环境中采取行动获得随着时间推移最大化累积奖励)不仅仅辅助人类,还需要采取行动。机器作为智能体,操作后判断环境状态机器学习的发展过程50年代(创建ML术语)->60年代(神经网络+感知机,因为感知机被证明了局限性所以被冷冻)->70年代(做符号归纳,专家系...
2020-02-28 21:17:19 150
原创 从零开始的深度学习--4
引入注意力机制的seq2seq(编码器-解码器)在之前的练习中,解码器在各个时间步依赖相同的背景变量(context vector)来获取输入的序列信息。当编码器为循环神经网络时,背景变量来自它最终时间步的隐藏状态。将源序列输入信息以循环单位状态编码,然后将其传递给解码器以生成目标序列。然而这种结构存在着问题,尤其是RNN机制实际中存在长程梯度消失的问题,对于较长的句子,我们很难寄希望于将输入...
2020-02-25 21:49:11 161 1
原创 从零开始的深度学习--3
理论部分1、循环神经网络是一类以序列(sequence)数据为输入,在序列的演进方向进行递归(recursion)且所有节点(循环单元)按链式连接的递归神经网络,即是基于当前的输入与过去的输入序列,预测序列的下一个字符。我们先看循环神经网络的具体构造。假设X是时间步的小批量输入,H是该时间步的隐藏变量,则:φ表示非线性激活函数。由于Ht能够捕捉截至当前时间步的序列的历史信息,就像是神经...
2020-02-18 21:43:16 231
原创 从零开始的深度学习--2
这个博文主要包括了了第一次课程的内容,包括线性回归,softmax与分类模拟,多层感知机。以下内容将从理论知识和代码解释两部分内容来展开。理论知识深度学习模型也可以看作是由许多简单函数复合而成的函数。当这些复合的函数足够多时,深度学习模型就可以表达非常复杂的变换代码实现及释义...
2020-02-14 21:47:21 230 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人