Python
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
16、内存分析与多维数据集在商业智能中的应用与工具解析
本文深入探讨了内存式表格模型与多维数据集在商业智能(BI)中的应用,详细解析了各类BI工具的功能与使用场景。内容涵盖表格模型的存储、查询语言(DAX与MDX)、主流前端工具(如Excel、Power View、Reporting Services等),以及第三方工具集成。同时介绍了数据模型设计、聚合与分区策略、安全机制,并结合实际案例分析工具应用。最后展望了BI领域未来发展趋势,强调开发者需持续学习以应对技术变革。原创 2025-11-08 00:46:00 · 53 阅读 · 0 评论 -
15、深入探索表格模型:从分区到性能优化
本文深入探讨了表格模型在数据处理与分析中的核心功能与应用,涵盖分区设计、计算创建(包括DAX公式)、层次结构构建、数据排序控制、对象隐藏、视角创建及安全性配置。同时介绍了性能优化策略、数据连接整合、模型部署发布、运行监控维护以及预测分析等高级应用场景,全面展示了如何通过表格模型提升商业智能系统的效率与价值。原创 2025-11-07 13:41:08 · 34 阅读 · 0 评论 -
14、利用聚合优化立方体性能及内存中表格模型的使用
本文介绍了如何通过基于使用情况的优化创建聚合来提升多维立方体性能,并详细讲解了配置查询日志、捕获查询及生成聚合的完整流程。同时,文章深入探讨了SQL Server中的内存中表格模型,涵盖其架构原理、xVelocity引擎优势、表格模式实例安装、项目创建以及从多种数据源(如数据库、文本文件、Reporting Services报告)导入数据的方法,帮助开发者构建高效的企业级分析解决方案。原创 2025-11-06 11:12:00 · 28 阅读 · 0 评论 -
13、多维数据集项目的安全保障与性能优化
本文深入探讨了多维数据集项目中的安全保障与性能优化策略。通过实现基于用户名的动态安全机制,确保数据访问的安全性;利用聚合向导和手动方式创建聚合,提升查询性能。同时,文章结合实际案例分析用户查询模式,提出避免过度聚合、动态调整和监控性能等最佳实践,并通过mermaid流程图展示手动聚合与安全性能综合考量的实施路径,帮助构建安全高效的分析环境。原创 2025-11-05 11:39:49 · 33 阅读 · 0 评论 -
12、多维数据集功能扩展与安全保障
本文深入探讨了多维数据集的功能扩展与安全保障机制,涵盖加权分配、基于角色的安全模型、对象级和单元格级权限控制、维度与度量安全设置,以及动态安全的实现方法。通过实例演示了如何创建自定义角色、应用维度数据安全、使用Visual Totals解决聚合显示问题,并分析了用户属于多个角色时的权限处理逻辑。同时强调安全模型应简洁可维护,并提出定期审查、监控访问行为和性能优化等维护策略,最终实现安全与性能的平衡,确保敏感数据得到有效保护的同时提升用户体验。原创 2025-11-04 09:05:08 · 31 阅读 · 0 评论 -
11、为你的立方体添加功能
本文详细介绍了如何为数据分析中的立方体添加多种实用功能,包括时间和日期计算、关键绩效指标(KPI)、视角、翻译、自定义操作以及写回功能。通过设置时间维度、创建KPI衡量目标绩效、使用视角简化浏览、支持多语言翻译、扩展自定义钻取操作,以及利用写回功能实现预算数据录入,全面提升立方体的分析能力与用户体验。适用于基于SQL Server Analysis Services的商业智能解决方案开发。原创 2025-11-03 11:11:09 · 32 阅读 · 0 评论 -
10、多维数据集功能扩展与计算实现
本文详细介绍了多维数据集的功能扩展与计算实现方法,涵盖添加度量值和度量值组、构建引用维度与多对多维度、创建父子层次结构维度,以及使用MDX定义计算成员、命名集和关键绩效指标(KPIs)。通过实际操作步骤和应用案例,帮助读者深入理解如何增强多维数据集的分析能力,并强调了性能优化与计算重用的重要性,为复杂业务场景下的数据分析提供有力支持。原创 2025-11-02 11:37:19 · 29 阅读 · 0 评论 -
9、MDX查询与工具使用全解析
本文深入解析了MDX(多维表达式)的基础概念与核心功能,涵盖集合、元组、计算成员、命名集合及常用函数的使用方法。同时详细介绍了Excel和Reporting Services作为查询工具与Analysis Services结合的应用场景、操作步骤及优缺点对比,并提供了性能优化策略与流程图建议。适合MDX初学者和数据分析人员参考,帮助提升多维数据查询效率与报表开发质量。原创 2025-11-01 10:46:56 · 29 阅读 · 0 评论 -
8、多维数据集部署、处理与查询指南
本文详细介绍了多维数据集在商业智能环境中的部署、处理与查询技术,涵盖ROLAP分区性能优化、HOLAP与主动缓存等存储模式特点,并通过实际操作步骤演示如何配置实时ROLAP维度。文章深入讲解了MDX查询语言的基础语法与核心概念,包括唯一名称、元组、集合、计算成员和常用函数,同时展示了使用SQL Server Management Studio和Excel进行多维数据集查询的方法。最后总结了性能优化与查询编写的最佳实践,帮助用户高效管理和分析多维数据。原创 2025-10-31 11:21:25 · 25 阅读 · 0 评论 -
7、分析服务中多维数据集的处理与优化
本文深入探讨了分析服务中多维数据集的处理与优化策略。内容涵盖处理的基本流程、XMLA命令、处理模式(如ProcessFull、ProcessUpdate)、并行处理与事务配置,以及通过SSIS包调度处理任务的方法。文章重点介绍了如何利用分区减轻数据源负担、提升处理效率,并详细对比了MOLAP、ROLAP和HOLAP三种存储模式的特点与适用场景,提供了选择建议和配置步骤。此外,还总结了常见处理错误的排查方法及性能优化最佳实践,帮助用户在实际应用中实现高效、稳定的数据分析服务管理。原创 2025-10-30 16:35:06 · 28 阅读 · 0 评论 -
6、多维立方体创建与部署全攻略
本文详细介绍了多维立方体的创建与部署全过程,涵盖从基础概念、Fact Internet Sales立方体构建、维度添加,到部署配置、分区设计、存储模式选择及对象处理等关键步骤。同时提供了常见问题解决方案,并结合流程图直观展示整体开发流程,帮助用户高效构建高性能分析模型。原创 2025-10-29 09:52:26 · 26 阅读 · 0 评论 -
5、创建首个多维立方体:从数据源视图到维度设计
本文详细介绍了从创建数据源视图到设计和处理日期维度的完整流程,帮助读者构建首个高效、易用的多维立方体。内容涵盖数据仓库的必要性、数据源视图的构建、计算列与命名查询的添加、维度的概念与结构、日期维度的创建与优化,以及维度的部署与浏览。通过实际操作步骤和最佳实践,为后续多维建模和商业智能分析打下坚实基础。原创 2025-10-28 16:16:04 · 29 阅读 · 0 评论 -
4、安装 SSAS 并为立方体开发做准备
本文介绍了如何安装和配置SQL Server Analysis Services(SSAS)并使用SQL Server Data Tools创建第一个多维立方体。内容涵盖开发环境的搭建、项目创建与部署、数据源连接配置以及数据源视图的使用。通过详细的步骤指导和流程图,帮助开发者理解从环境准备到立方体开发的完整流程,为后续的商业智能分析和数据建模打下基础。原创 2025-10-27 11:06:16 · 40 阅读 · 0 评论 -
3、安装 SSAS 并为立方体开发做准备
本文详细介绍了如何安装 SQL Server Analysis Services (SSAS) 并为多维和表格立方体开发做准备。内容涵盖 BI 语义模型架构、多维与表格模型的功能对比、部署模式选择决策流程、安装步骤、硬件要求、工具支持以及示例数据库的附加与使用。同时探讨了 Power View 的兼容性及未来发展趋势,帮助开发者根据业务需求选择合适的模型,为构建高效 BI 解决方案奠定基础。原创 2025-10-26 09:04:56 · 40 阅读 · 0 评论 -
2、自助式商业智能:从数据中创造价值
本文探讨了企业在信息管理中面临的IT与业务脱节问题,分析了传统BI系统的局限性,并提出通过构建数据仓库和使用SQL Server Analysis Services创建语义模型来实现自助式商业智能的解决方案。文章详细介绍了用户和IT部门创建语义模型的方式、自助式报告的价值、实现关键要点及实际应用案例,强调了数据质量、安全、培训与技术支持的重要性,展示了自助式BI在提升决策效率、降低成本和增强用户自主性方面的显著优势。原创 2025-10-25 13:07:31 · 34 阅读 · 0 评论 -
1、SQL Server 2012 立方体开发入门
本文介绍了SQL Server 2012立方体开发的完整入门指南,涵盖从环境搭建、多维立方体创建、部署处理、MDX查询到功能扩展、安全配置和性能优化的全过程。同时讲解了表格模式内存模型及其在商业智能架构中的应用,适合希望掌握Microsoft BI解决方案的开发者和数据专业人员学习参考。原创 2025-10-24 14:10:04 · 21 阅读 · 0 评论
分享