数据分析的基本流程主要有以下几个环节:
1、明确分析目的
明确数据分析的目的,才能确保数据分析有效进行,为数据的采集、处理、分析提供清晰的指引方向。
2、数据收集
数据收集按照确定的数据分析的目的来收集相关数据的过程,为数据分析提供依据。一般数据来源于数据库、互联网、市场调查、公开出版物。
3、数据处理
数据处理包括:数据采集、数据分组、数据组织、数据计算、数据存储、数据检索、数据排序。
4、数据分析
数据分析分为:定性数据分析是指对词语、照片、观察结果之类的非数值型数据进行的分析。验证性数据分析是侧重于已有假设的证实或证伪。探索性数据分析是对数据进行分析从而检验假设值的形成方式,侧重于数据之中发现新的特征。
5、数据展示
常用柱形图、饼图、折线图等图标展示有用的信息,一目了然的发现数据的本质与作用。
6、报告撰写
报告撰写是整个数据分析的最后一步,是对整个数据分析过程的总结。一份优秀的报告需要一个名确的主题、清晰的目录、图文并茂描述数据、结论与建议。
以上就是今天的全部内容分享,觉得有用的话欢迎点赞收藏哦!
Python经验分享
学好 Python 不论是用于就业还是做副业赚钱都不错,而且学好Python还能契合未来发展趋势——人工智能、机器学习、深度学习等。
小编是一名Python开发工程师,自己整理了一套最新的Python系统学习教程,包括从基础的python脚本到web开发、爬虫、数据分析、数据可视化、机器学习等。如果你也喜欢编程,想通过学习