Python的优势
关于Python有句比较有名的话:”人生苦短,我用Python。“<img
最主要的原因,是因为Python简洁、可读性强,要实现同样功能,Python的代码量明显少于Java、C++等语言,意味着可以缩短开发周期,提升开发效率。举几个直观的例子:
1.文件读写:
Python:
with open("file.txt", "r") as file:
content = file.read()
print(content)
Java:
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
public class FileOperations {
public static void main(String[] args) {
try (BufferedReader reader = new BufferedReader(new FileReader("file.txt"))) {
String line;
while ((line = reader.readLine()) != null) {
System.out.println(line);
}
} catch (IOException e) {
e.printStackTrace();
}
}
}
C++:
#include <iostream>
#include <fstream>
#include <string>
int main() {
std::ifstream file("file.txt");
if (file.is_open()) {
std::string line;
while (std::getline(file, line)) {
std::cout << line << std::endl;
}
file.close();
} else {
std::cout << "Unable to open file" << std::endl;
}
return 0;
}
在实现文件读写过程中,Python 使用了上下文管理器(Context Manager)来自动处理文件的打开和关闭,而 Java 和 C++ 需要使用更多的语句来完成同样的任务。
2.列表操作:
Python:
numbers = [1, 2, 3, 4, 5]
squared_numbers = [num ** 2 for num in numbers]
print(squared_numbers)
Java:
import java.util.ArrayList;
import java.util.List;
public class ListOperations {
public static void main(String[] args) {
List<Integer> numbers = new ArrayList<>();
numbers.add(1);
numbers.add(2);
numbers.add(3);
numbers.add(4);
numbers.add(5);
List<Integer> squaredNumbers = new ArrayList<>();
for (int num : numbers) {
squaredNumbers.add(num * num);
}
System.out.println(squaredNumbers);
}
}
C++:
#include <iostream>
#include <vector>
int main() {
std::vector<int> numbers = {1, 2, 3, 4, 5};
std::vector<int> squaredNumbers;
for (int num : numbers) {
squaredNumbers.push_back(num * num);
}
for (int num : squaredNumbers) {
std::cout << num << " ";
}
std::cout << std::endl;
return 0;
}
列表操作中,Python可以使用列表推导式(List Comprehension)来简洁地生成一个新的列表,而 Java 和 C++ 需要使用循环和额外的语句。
3.机器学习的线性回归案例:
Python:
import numpy as np
from sklearn.linear_model import LinearRegression
# 生成随机数据
X = np.array([[1], [2], [3], [4], [5]])
y = np.array([2, 4, 6, 8, 10])
# 创建线性回归模型
model = LinearRegression()
# 训练模型
model.fit(X, y)
# 预测
x_test = np.array([[6]])
y_pred = model.predict(x_test)
print(y_pred)
Java:
import org.apache.commons.math3.stat.regression.SimpleRegression;
public class LinearRegressionExample {
public static void main(String[] args) {
double[] X = {1, 2, 3, 4, 5};
double[] y = {2, 4, 6, 8, 10};
SimpleRegression model = new SimpleRegression();
for (int i = 0; i < X.length; i++) {
model.addData(X[i], y[i]);
}
double x_test = 6;
double y_pred = model.predict(x_test);
System.out.println(y_pred);
}
}
C++:
#include <iostream>
#include <vector>
#include <cmath>
#include <numeric>
double linearRegression(const std::vector<double>& X, const std::vector<double>& y, double x_test) {
double sumX = std::accumulate(X.begin(), X.end(), 0.0);
double sumY = std::accumulate(y.begin(), y.end(), 0.0);
double sumXY = 0.0;
double sumX2 = 0.0;
for (int i = 0; i < X.size(); i++) {
sumXY += X[i] * y[i];
sumX2 += X[i] * X[i];
}
double meanX = sumX / X.size();
double meanY = sumY / y.size();
double slope = (sumXY - X.size() * meanX * meanY) / (sumX2 - X.size() * meanX * meanX);
double intercept = meanY - slope * meanX;
return slope * x_test + intercept;
}
int main() {
std::vector<double> X = {1, 2, 3, 4, 5};
std::vector<double> y = {2, 4, 6, 8, 10};
double x_test = 6;
double y_pred = linearRegression(X, y, x_test);
std::cout << y_pred << std::endl;
return 0;
}
可以看出,Python 使用了 Scikit-learn 库提供的 LinearRegression 类来实现线性回归,更方便快捷。而 Java需要额外的循环操作来将数据添加进线性模型, C++ 则需要手动计算回归系数和截距。当然,从运行效率的角度来说,Python的速度比Java、 C++慢。但人工智能有时需要的是快速构建模型并检验模型效果,使用Python可以明显减少开发时长。
除此之外,Python还有以下优点:
Python易学易用,语法清晰,初学者能够更容易入门Python拥有丰富的第三方库和框架,包括NumPy、Pandas、Matplotlib、Scikit-Learn、TensorFlow和PyTorch等,这些库和框架封装了用于数据处理、数据可视化、特征工程、模型开发和深度学习的工具和函数,使得完成机器学习项目变得更加容易。
Python有庞大的开发者社区,能找到丰富的机器学习的示例代码。社区中也有很多开源项目和贡献者,对机器学习工具进行不断改进和扩展。
Python是一种跨平台语言,可以在多个操作系统上运行,这使得开发者可以轻松地在不同环境中共享代码和模型。
Python支持大规模数据处理和分析,可以与Hadoop、Spark和云计算平台集成,使其在处理大规模数据集时表现出色。
如何学习Python
可见Python有很多优点,而如何学习Python呢?给大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,人工智能、自动化办公等学习教程。带你从零基础系统性的学好Python!
👉Python所有方向的学习路线👈
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(全套教程文末领取)
👉Python学习视频600合集👈
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
温馨提示:篇幅有限,已打包文件夹,获取方式在:文末
👉Python70个实战练手案例&源码👈
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉Python大厂面试资料👈
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
👉Python副业兼职路线&方法👈
学好 Python 不论是就业还是做副业赚钱都不错,但要学会兼职接单还是要有一个学习规划。
👉 这份完整版的Python全套学习资料已经上传,朋友们如果需要可以扫描下方CSDN官方认证二维码或者点击链接免费领取【保证100%免费
】
点击免费领取《CSDN大礼包》:Python入门到进阶资料 & 实战源码 & 兼职接单方法 安全链接免费领取