【人工智能时代】:为什么将 Python 称为第一语言?

本文介绍了Python语言因其简洁、可读性强以及丰富的库支持而在开发效率和机器学习领域的优势,如文件操作、列表操作的简洁实现,以及Scikit-Learn在机器学习中的应用。同时强调了Python易学的特点和其在大数据处理和社区支持上的优点,提供了学习资源链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python的优势

关于Python有句比较有名的话:”人生苦短,我用Python。“<img 在这里插入图片描述

最主要的原因,是因为Python简洁、可读性强,要实现同样功能,Python的代码量明显少于Java、C++等语言,意味着可以缩短开发周期,提升开发效率。举几个直观的例子:

1.文件读写:

Python:

with open("file.txt", "r") as file:
    content = file.read()
    print(content)

Java:

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;

public class FileOperations {
    public static void main(String[] args) {
        try (BufferedReader reader = new BufferedReader(new FileReader("file.txt"))) {
            String line;
            while ((line = reader.readLine()) != null) {
                System.out.println(line);
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

C++:

#include <iostream>
#include <fstream>
#include <string>
int main() {
    std::ifstream file("file.txt");
    if (file.is_open()) {
        std::string line;
        while (std::getline(file, line)) {
            std::cout << line << std::endl;
        }
        file.close();
    } else {
        std::cout << "Unable to open file" << std::endl;
    }

    return 0;
}

在实现文件读写过程中,Python 使用了上下文管理器(Context Manager)来自动处理文件的打开和关闭,而 Java 和 C++ 需要使用更多的语句来完成同样的任务。

2.列表操作:

Python:

numbers = [1, 2, 3, 4, 5]
squared_numbers = [num ** 2 for num in numbers]
print(squared_numbers)

Java:

import java.util.ArrayList;
import java.util.List;

public class ListOperations {
    public static void main(String[] args) {
        List<Integer> numbers = new ArrayList<>();
        numbers.add(1);
        numbers.add(2);
        numbers.add(3);
        numbers.add(4);
        numbers.add(5);

        List<Integer> squaredNumbers = new ArrayList<>();
        for (int num : numbers) {
            squaredNumbers.add(num * num);
        }

        System.out.println(squaredNumbers);
    }
}

C++:

#include <iostream>
#include <vector>
int main() {
    std::vector<int> numbers = {1, 2, 3, 4, 5};
    std::vector<int> squaredNumbers;

    for (int num : numbers) {
        squaredNumbers.push_back(num * num);
    }

    for (int num : squaredNumbers) {
        std::cout << num << " ";
    }
    std::cout << std::endl;

    return 0;
}

列表操作中,Python可以使用列表推导式(List Comprehension)来简洁地生成一个新的列表,而 Java 和 C++ 需要使用循环和额外的语句。

3.机器学习的线性回归案例:

Python:

import numpy as np
from sklearn.linear_model import LinearRegression

# 生成随机数据
X = np.array([[1], [2], [3], [4], [5]])
y = np.array([2, 4, 6, 8, 10])

# 创建线性回归模型
model = LinearRegression()

# 训练模型
model.fit(X, y)

# 预测
x_test = np.array([[6]])
y_pred = model.predict(x_test)

print(y_pred)

Java:

import org.apache.commons.math3.stat.regression.SimpleRegression;

public class LinearRegressionExample {
    public static void main(String[] args) {
        double[] X = {1, 2, 3, 4, 5};
        double[] y = {2, 4, 6, 8, 10};

        SimpleRegression model = new SimpleRegression();
        for (int i = 0; i < X.length; i++) {
            model.addData(X[i], y[i]);
        }

        double x_test = 6;
        double y_pred = model.predict(x_test);

        System.out.println(y_pred);
    }
}

C++:

#include <iostream>
#include <vector>
#include <cmath>
#include <numeric>
double linearRegression(const std::vector<double>& X, const std::vector<double>& y, double x_test) {
    double sumX = std::accumulate(X.begin(), X.end(), 0.0);
    double sumY = std::accumulate(y.begin(), y.end(), 0.0);
    double sumXY = 0.0;
    double sumX2 = 0.0;

    for (int i = 0; i < X.size(); i++) {
        sumXY += X[i] * y[i];
        sumX2 += X[i] * X[i];
    }

    double meanX = sumX / X.size();
    double meanY = sumY / y.size();

    double slope = (sumXY - X.size() * meanX * meanY) / (sumX2 - X.size() * meanX * meanX);
    double intercept = meanY - slope * meanX;

    return slope * x_test + intercept;
}

int main() {
    std::vector<double> X = {1, 2, 3, 4, 5};
    std::vector<double> y = {2, 4, 6, 8, 10};

    double x_test = 6;
    double y_pred = linearRegression(X, y, x_test);

    std::cout << y_pred << std::endl;

    return 0;
}

可以看出,Python 使用了 Scikit-learn 库提供的 LinearRegression 类来实现线性回归,更方便快捷。而 Java需要额外的循环操作来将数据添加进线性模型, C++ 则需要手动计算回归系数和截距。当然,从运行效率的角度来说,Python的速度比Java、 C++慢。但人工智能有时需要的是快速构建模型并检验模型效果,使用Python可以明显减少开发时长。

除此之外,Python还有以下优点:

Python易学易用,语法清晰,初学者能够更容易入门Python拥有丰富的第三方库和框架,包括NumPy、Pandas、Matplotlib、Scikit-Learn、TensorFlow和PyTorch等,这些库和框架封装了用于数据处理、数据可视化、特征工程、模型开发和深度学习的工具和函数,使得完成机器学习项目变得更加容易。

Python有庞大的开发者社区,能找到丰富的机器学习的示例代码。社区中也有很多开源项目和贡献者,对机器学习工具进行不断改进和扩展。

Python是一种跨平台语言,可以在多个操作系统上运行,这使得开发者可以轻松地在不同环境中共享代码和模型。

Python支持大规模数据处理和分析,可以与Hadoop、Spark和云计算平台集成,使其在处理大规模数据集时表现出色。

如何学习Python

可见Python有很多优点,而如何学习Python呢?给大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,人工智能、自动化办公等学习教程。带你从零基础系统性的学好Python!

👉Python所有方向的学习路线👈

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(全套教程文末领取)

在这里插入图片描述

👉Python学习视频600合集👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末
👉Python70个实战练手案例&源码👈

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉Python大厂面试资料👈

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

在这里插入图片描述

在这里插入图片描述

👉Python副业兼职路线&方法👈

学好 Python 不论是就业还是做副业赚钱都不错,但要学会兼职接单还是要有一个学习规划。

在这里插入图片描述

👉 这份完整版的Python全套学习资料已经上传,朋友们如果需要可以扫描下方CSDN官方认证二维码或者点击链接免费领取保证100%免费

点击免费领取《CSDN大礼包》:Python入门到进阶资料 & 实战源码 & 兼职接单方法 安全链接免费领取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值