本篇主要从训练数据预处理、模型结构、训练参数设置与错误处理四大角度比较细节地分享大模型微调经验。
大模型的训练和微调过程相对于以前NLP中fine-tuning模式存在一些新的坑,并且做一些简单的消融实验相对于以前的模式试错成本也更高;此外目前很多算法工程师更多精力都放在了处理数据上, 工作之余很难有精力去做探索实验。
所以小伙伴们在实践前可以多看看一些通用的实践经验,带着一些先验知识去探索,尽量规避自己陷入一些无意义的坑中。
本篇将开启一个新系列,尽量细节的讲讲大模型中训练和微调的经验。
本篇主要从训练数据预处理、模型结构、训练参数设置与错误处理四大角度来谈经验,下面是一个问题的快捷目录。
\1. 拿到业务产生的一批新的对话数据,需要进行SFT,怎样对这批数据进行优化?
\2. 模型训练时,历史对话长度是不是设置得越长越好,一般设置多少?
\3. 模型训练样本量规模增大,导致训练任务直接报OOM了,该怎么办?
\4. 微调大模型的时候在模型结构方面有哪些经验?
\5. 微调大模型的时候训练配置一般是怎样的?
\6. 微调大模型时出现错误崩溃该怎么办?
拿到业务产生的一批对话数据,需要进行SFT,怎样对这批数据进行优化?
1. 上下文内容处理
考虑具体模型历史对话长度,输入历史对话数据进行左截断, 保留最新的对话记录。
2. 语句顺滑处理
把一些口语化的语气词、语法错误等进行顺滑,如嗯嗯、呃、啊啊之类的口语词。
3. 去掉一些敏感或不合适的内容
这里可以从整句和词的角度来考虑。
- 整句
可以基于如fasttext等模型训练一个简单的文本分类模型,把价值观不正确的或不合适的样本数据筛出来;
还可以训练一个奖励模型。
- 词
这里比较直接,可以设置一个敏感词列表。
4. 扩充用户特征标签
基于年龄、性别、地域、人群等,针对对话的用户做一个特征标签,可以便于后期分析,做其他实验等。
模型训练时,历史对话长度是不是设置得越长越好,一般设置多少?
这个消融实验是这么设计的,选同一个模型,分别用两种方案训练,变量是max_source_length和max_target_length,对训练好之后的模型从Loss、Bleu指标、离线人工评估等角度进行对比分析。
下面直接附上结论:
基于现有显存条件,从人工评估少量样本以及loss下降来看,历史对话长度设置得越长越好。历史对话长度1024比512长度好,后续如果训练可能上线模型,可以扩大到1024长度。
模型训练样本量规模增大,导致训练任务直接报OOM了,该怎么办?
1. 方案
对数据并行处理,核心思想是使数据向量化耗时随处理进程的增加线性下降,训练时数据的内存占用只和数据分段大小有关,可以根据数据特点,灵活配置化。
2. 具体操作
- 均分完整数据集到所有进程(总的GPU卡数);
- 每个epoch训练时整体数据分片shuffle一次,在每个进程同一时间只加载单个分段大小数据集;
- 重新训练时可以直接加载向量化后的数据。
微调大模型的时候在模型结构有哪些经验?
- 模型结构:目前都用Causal Decoder + LM。有很好的zero-shot和few-shot能力,涌现效应
- Layer normalization: 使用Pre RMS Norm
- 激活函数: 使用GeGLU或SwiGLU
- Embedding层后不添加layer normalization,否则会影响LLM的性能
- 位置编码: 使用ROPE或ALiBi。ROPE应用更广
- 去除偏置项: 去除dense层和layer norm的偏置项,有助于提升稳定性
微调大模型的时候在训练配置方面有哪些经验?
- Batch size: 大模型在硬件显存满足的情况下,一般batch size越大越好, 建议选用很大的batch size; 后期动态地增加batch size的策略,GPT3逐渐从32K增加到3.2M tokens。
- 学习率设置: 先warmup再衰减。学习率先线性增长,再余弦衰减到最大值的10%。最大值一般在 5e-5到1e-4之间。
- 梯度裁剪: 通常将梯度裁剪为1.0。
- 权重衰减: 采用AdamW优化器,权重衰减系数设置为0.1Adamw相当于Adam加了一个L2正则项。
- 混合精度训练: 采用bfloat16,而不是foat16来训练。
微调大模型时出现错误崩溃该怎么办?
前面都好好的,过某个shard的时候突然崩溃了大概率是数据问题。
选择一个好的断点,跳过训练崩溃的数据段,进行断点重训。
选择一个好的断点的两点标准:
- 损失标度 lossscale>0;
- 梯度的L2范数<一定值 且 波动小。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
