在利用大模型完成各种任务时,掌握一些基本的提示词技巧不仅可以显著提高工作效率,还能大幅提升生成结果的质量。这些技巧有助于我们更精准地引导模型,从而实现更加符合预期的输出效果。通过对提示词的优化,我们能够更好地控制模型的行为,减少误差,并使模型生成的内容更加相关和高效。
为了帮助大家更好地理解和应用这些技巧,下面我们将详细介绍9个入门技巧。这些技巧不仅适用于新手,也能为有经验的用户提供有效的优化建议。掌握这些技巧将使我们能够在实际应用中更好地利用大模型,实现我们的工作目标和业务需求。让我们一起深入探索这些实用的方法,以提升模型的表现和结果的准确性。
提示词工程的工作原理
提示词工程是指通过精心设计和优化输入文本,引导自然语言处理模型生成符合预期的高质量输出。它的工作原理在于明确任务目标、设计初始提示、不断测试优化,并通过评估确保效果。这一过程对提升模型表现、减少误差、提高效率以及增强用户体验至关重要,是推动人工智能技术落地应用的关键所在。
注意:后续类似于
{text input here}
是实际文本/上下文的占位符,表示实际要输入的文字。
下面介绍下一下这9个入门技巧,以便更好使用大模型完成我们想要的工作。
1.使用最新的模型
为了获得最佳效果,建议优先使用最新、性能最强的模型。新模型通常更易于优化提示词,并且在处理复杂任务时表现更出色。
2.将指令放在提示词的开头,并使用分隔符将指令和上下文分开
当指令位于提示词的开头时,模型能在处理输入的第一时间准确识别要执行的任务。这减少了模型在解析输入时的混淆,提高了执行指令的准确性。并且使用###
或"""
等分隔符可以将指令和具体内容明确分开,使模型在理解和处理提示时不会将指令与上下文内容混淆。这有助于模型更好地专注于指令本身,避免上下文干扰。
效果较差的案例:
将下面的文字总结为最重要的要点列表。
{text input here}
效果较好的案例:
将下面的文字总结为最重要的要点列表:
Text: """
{text input here}
"""
3. 在描述上下文中尽可能具体、详细地描述所需的背景、结果、长度、格式、风格等
在上下文中,尽量具体说明背景、结果、长度、格式、风格等,以便结果符合预期。
效果较差的案例:
写一首关于 OpenAI 的诗。
效果较好的案例:
以{著名诗人}的风格写一首关于 OpenAI 的简短励志诗,重点介绍最近的
DALL-E 产品发布(DALL-E 是一个文本到图像的 ML 模型)
4. 通过示例阐明所需的输出格式
通过示例阐明所需的输出格式,可以减少模型理解中的歧义,提升输出的准确性和一致性,并减少用户对生成内容的反复调整需求。示例不仅为模型提供清晰的参考,还能引导其更好地适应任务要求,从而快速生成符合预期的结果。
效果较差的案例:
提取以下文本中提到的实体。提取以下4种实体类型:公司名称、人名、特定主题和主题。
Text:{text}
当需要大模型回复特定格式时,为了模型会做出更好的响应,要尽量将输出格式进行说明,这样输出格式会更可靠,使用代码解析也更容易;
效果较好的案例:
提取下面文本中提到的重要实体。首先提取所有公司名称,然后提取所有人名,然后提取符合内容的特定主题,最后提取一般的总体主题。
所需格式:
公司名称集合:<使用逗号分隔的公司名称集合>
人名:-||-
特定主题:-||-
一般主题:-||-
文本:{text}
5. 先从零样本(zero-shot)开始
通过依次采用零样本(zero-shot)、少样本(few-shot),再到微调的策略,以最小化资源投入并逐步优化模型性能。零样本方法无需额外数据,即可快速评估模型的初始能力;如果效果不理想,可以通过少量示例的少样本学习对模型进行轻量定制;最后,若仍无法达到预期效果,则采用资源密集的微调(fine-tune),以确保模型在特定任务上表现最佳。
- • zero-shot
从以下文本中提取关键字。
文本:{text}
关键字:
- • few-shot - 提供几个示例
从下面相应的文本中提取关键词。
##
文本1:Stripe 提供 API,Web 开发人员可以使用这些 API 将支付处理集成到他们的网站和移动应用程序中。
关键词1:Stripe、支付处理、API、Web 开发人员、网站、移动应用程序
##
文本2:OpenAI 训练了非常擅长理解和生成文本的尖端语言模型。我们的 API 提供对这些模型的访问,可用于解决几乎任何涉及处理语言的任务。
关键词2:OpenAI、语言模型、文本处理、API。
##
文本 3:{text}
关键词3:
- • 微调(Fine-Tune):了解微调的最佳实践,可以参考OPENAI的微调指南。
6. 减少“空洞”和不精确的描述
空洞或不精确的描述会让模型难以准确理解任务或目标,导致生成的内容不相关或偏离预期。模糊的指令可能使模型朝多个方向生成内容,其中许多可能不符合用户需求。精确的指令能减少歧义,确保模型聚焦于正确的任务。明确的指令还可减少反复调整和澄清的次数,节省时间和资源,尤其在处理复杂任务或需要精确结果的场景中尤为重要。
效果较差的案例:
该产品的描述应该比较简短,只有几句话,不要太多。
效果较好的案例:
使用3到5个句子的段落来描述该产品。
7. 不要只说不该做什么,而要说该做什么
当给模型提供指令时,确保不仅包含对禁止事项的说明,还应包含明确的操作指导,以提高模型生成的响应质量和实用性。
效果较差的案例:
以下是代理与客户之间的对话。请勿询问用户名或密码。请勿重复。
客户:我无法登录我的帐户。
代理:
效果较好的案例:
以下是代理与客户之间的对话。代理将尝试诊断问题并提出解决方案,同时避免询问任何与 PII 相关的问题。不要询问 PII(例如用户名或密码),而是让用户参考帮助文章 www.samplewebsite.com/help/faq
客户:我无法登录我的帐户。
代理:
8. 代码生成专用 - 使用“引导词”推动模型向特定模式发展
Leading words(引导词)是指在提示中加入特定的词汇或短语,以引导生成模型朝特定方向输出内容。例如,在编写Python
代码时,如果提示中包含“import
”这个词,模型会更倾向于理解用户是在要求生成Python
代码,并可能直接从导入库开始写代码。
效果较差的案例:
# 编写一个 Python 脚本来读取 CSV 文件并打印内容
在下面的代码示例中,添加“import
”这样的引导词提示模型应该开始用Python
编写。类似地,“ SELECT
”是 SQL 语句开头的一个很好的提示。
效果较好的案例:
# 编写一个 Python 脚本来读取 CSV 文件并打印内容。
import
9.参数控制
通常来说,在使用大模型时,model
和temperature
改变模型输出最常用的参数。
- •
model
:性能更高的模型通常更昂贵,并且可能具有更高的延迟。 - •
temperature
-temperature 是一个控制模型输出的随机性和创造性的参数。
当 temperature
较高时,模型更倾向于选择一些不太可能的词语或生成更不常见的句子结构。这意味着生成的内容会更加随机和富有创造性,但可能会偏离事实或处理同一问题时结果变得不一致;
当temperature较低时(尤其是0),模型会更倾向于生成最确定的、最有可能的答案,从而提高结果的准确性和可信度。这样输出的内容更为保守和稳定,更接近事实或常识。对于需要精确答案或处理事实数据的场景(例如数据提取或问答系统),使用 temperature = 0 是最好的选择。
- •
max_tokens
- 生成的文本中 token 数量的上限。它不是为了控制输出长度,而是为了设置一个硬性限制,防止模型生成过长的文本。理想情况下,模型在完成任务或达到停止序列时会自动停止生成,而不会一直生成直到达到max_tokens
限制。这个限制更多是作为一种安全机制,确保不会有意外的过长输出。
如何学习大模型
现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。
作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。
我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。

一、AGI大模型系统学习路线
很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。
二、AI大模型视频教程
三、AI大模型各大学习书籍
四、AI大模型各大场景实战案例
五、结束语
学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。
再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。
因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。