大模型部署的问题,以及企业级大模型的分布式部署方案

大模型的分布式训练和部署,是一个必须要学会的东西**”**

在学习大模型的过程中,很多人都知道大模型的训练与部署,但网上大部分资料介绍的都是单机训练和部署。

比如在之前的文章中——你想在本地部署大模型吗?,介绍了本地部署大模型的三种工具。

但这些工具总会有各种各样的问题。

01

大模型训练或部署中的问题

在学习大模型训练和部署的过程中,很多人都是按照网络上的教程进行学习;但这些教程大部分只讲了浅显的东西,还有很多问题没有讲明白。

比较明显的两个问题就是,大模型的规模问题和大模型的适配问题。

规模问题

学习和企业级应用是有着巨大差别的,比如说学习大模型的过程中,只需要设计一个几十个参数的大模型即可了解大模型的设计,训练和使用原理。

但在真正的企业级应用中,大模型的参数少则几个亿,多则几十,几百,甚至几万亿的参数量。

图片

在这种企业级应用中,如果大规模的参数怎么保存,怎么加载;单机硬件资源有限的情况下,怎么进行分布式训练和分布式部署。

以openAI的chatGPT来说,最新版的gpt4o预估

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值