刚刚,20亿规模的新融资被官宣,砸向了AI。
AI+IoT方向的独角兽特斯联,再次被推至台前。
作为AI1.0时代就跻身独角兽的明星创业公司,特斯联是国内最早开启AI+物联网方向落地的企业,而面向生成式AI为核心的AI2.0时代,特斯联也明确了自己“模型+系统”的技术落地路径,并希望多个领域场景实现商业化。
今日官宣交割的新融资,就是这个方向和战略潜力得到认可的资本证明。
新融资详情
据官方公告,本轮融资由国际投资机构 AL Capital 与国内产业基金阳明股权投资基金共同领投,国家发改委旗下投资平台、福田资本、金地集团、重科控股、数字重庆、南昌政府平台公司、徐州产业基金、北科建集团、光大控股、商汤科技等新老股东一同跟投。
所募资金,计划用于完善具有多模态能力的领域大模型在园区、企业、经济、能源等多场景的应用,打造高灵活度、高性能的智算基础设施,构建技术壁垒,进一步在人工智能物联网领域的国际竞争格局中形成产业化、集群化效应。
特斯联方面还表示,大模型浪潮下,LLMs对世界的理解局限于单一语言模态。要实现对世界更完善的理解,本质上需要融合语言、图像、视频等多模态数据和知识,这是大模型发展的必然趋势。
为此,特斯联提出“大模型+系统”的产业落地路径——
即由与具体场景深度结合的领域模型切入,通过场景定义的系统,克服跨模态数据的建模难题,并由此使领域模型逐步具备跨模态能力,这是短期内大模型得以在场景中规模化落地的更快路径。
特斯联创始人兼CEO艾渝介绍:加快推动人工智能发展、培育新质生产力,不仅是科技高质量发展的必然要求,同时也是特斯联矢志不渝的内在研发动力。过往八年,通过将人工智能技术与实际场景结合并持续落地,特斯联积累了宝贵的实践经验,并交付了近万个项目。我们期待将前沿的技术真正落地,服务于国家、社会,创造实际的价值。也因此,我们收获了国内、国外众多头部企业、机构及生态伙伴的信任与支持。在企业的全新发展阶段,特斯联将进一步紧密跟随国家战略部署,通过持续不断推进业务发展,构建科技企业在国际层面的科技领导力,在大模型落地应用的国际竞争格局中,进一步形成产业化、集群化效应,回馈股东及合作伙伴对特斯联的鼎力支持。
除了产业落地成绩,特斯联还在展现技术研发的团队厚度。
目前特斯联产研团队由三位IEEE Fellow领衔,CTO华先胜博士、首席科学家邵岭博士及首席科学家杨旸博士,已连续四年入选全球前2%顶尖科学家榜单(World’s Top 2% Scientists)。当前特斯联在多模态人工智能领域、视觉与语言领域、人工智能医疗领域论文的总引用量位列全球首位。
特斯联认为,伴随大模型及生成式AI技术快速发展,针对激增的智能算力需求,打造新一代高效能、高灵活度的智算基础设施“绿色智算体” ,为客户构建软硬一体化的算力、数字化和智能化平台,并提供AIoT、企业、园区、经济、能源等领域大模型应用,构建完善的智能算力网络。面对超大规模智算需求,可支撑千亿级参数大模型训练的智能算力系统,能够提升训练效率,降低企业成本。
而更具体的技术方向上,特斯联提出了——
“模型+系统”技术路径
“大模型+系统”?
特斯联CTO、AI大牛华先胜从大模型技术的三个层次来解释。
底层是基础大模型,目前主要由大厂和少数创业公司在研发,成本很高。
第二层是领域模型和系统的融合,就是真正在产业当中能够跟已有的系统连起来,解决行业里面的具体问题。这一层是特斯联的主要选择的战场。
最上面一层就是根据大模型去做应用。
此外,多模态也是特斯联技术思路的一个特点,不同于现有大模型在语言、视觉方面的能力,还有同现实世界系统的连接与融合,比如一些IoT数据。这其实也是AIoT公司区别于其他AI领域公司本质所在。
基于这样的思路,特斯联进行了两个方面产业化实践。
一方面是领域大模型以及相关应用,比如园区、企业、经济、能源等方面的落地。
像经济模型,主要是预测城市或者城区的和经济的发展情况,包括未来趋势,相当于在原有的大数据处理、计算等能力集成了大模型技术。
另一个则是绿色智算体。
这个可以简单理解为可适应并赋能到更多领域的一体化智算平台,可支撑起千亿级参数大规模训练,帮助企业私有化部署,进而降低产业数字化的门槛。
华先胜更具象地形容,绿色智算体是解决四高问题——
算力的使用门槛高;数字化门槛高;智能化门槛高;能耗高。
华先胜透露,接下来他们将进一步完善AIoT基础大模型。
截至目前,特斯联解决方案已覆盖全球120座城市,落地上万项目,在重庆、武汉、德阳等地区创建了超级智慧园区。
此次融资体现了资本市场对于模型+系统技术路径的高度认可。
当然,大模型+产业的结合之路绝非坦途。不同行业的业务逻辑、数据特征千差万别,如何平衡通用性与定制化,如何在数据隐私与共享间寻求平衡,都需要AIGC企业在实践中不断摸索。
但毋庸置疑的是,生成式AI的新技术机遇,最大的场景在产业,最大的变革在产业,最大的红利更在产业。
AI玩家从技术出发向下落地,产业玩家从场景出发向上构建能力,供应与需求,在交融交汇。
而在AI+IoT,特别是产业IoT这端,特斯联已经率先立起了flag~
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
123?spm=1001.2014.3001.5501)这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】