图解 LangChain 餐饮推荐,反复调试只为你打造个性化菜单系统

# 图解 LangChain 餐饮推荐,反复调试只为你打造个性化菜单系统
LangChain 就像是一个私人大厨,可以帮你根据口味偏好精准推荐最合适的美食选择。
## 基本功能
### 1. 链式调用
```python
from langchain.chains import LLMChain
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate

# 创建提示模板
食物模板 = PromptTemplate(
    input_variables=["菜系", "饮食偏好"],
    template="推荐一些{菜系}美食,要考虑{饮食偏好}的口味偏好。"
)

# 初始化语言模型
语言模型 = OpenAI(temperature=0.7)

# 创建链
推荐链 = LLMChain(llm=语言模型, prompt=食物模板)

# 获取推荐
结果 = 推荐链.run(菜系="川菜", 饮食偏好="不吃辣")
print(结果)

2. 工具集成

from langchain.agents import load_tools, initialize_agent
from langchain.agents import AgentType

# 加载工具
工具列表 = load_tools(["serpapi", "llm-math"], llm=语言模型)

# 创建代理
餐厅代理 = initialize_agent(
    tools=工具列表, 
    llm=语言模型,
    agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
    verbose=True
)

# 查询餐厅
查询结果 = 餐厅代理.run("附近的素食餐厅有哪些,并计算从我家到最近的一家需要多少时间")

在这里插入图片描述

实用功能

1. 记忆对话历史

# 添加记忆功能
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory

# 创建对话记忆
食物对话记忆 = ConversationBufferMemory()

# 构建有记忆的对话链
对话链 = ConversationChain(
    llm=语言模型,
    memory=食物对话记忆,
    verbose=True
)

# 连续对话
回复1 = 对话链.predict(input="我想吃一些健康的晚餐")
print(回复1)

# 引用之前的对话
回复2 = 对话链.predict(input="有什么低碳水的选择吗?")
print(回复2)  # 这里会记住之前讨论的是健康晚餐

2. 检索增强生成

from langchain.document_loaders import TextLoader
from langchain.indexes import VectorstoreIndexCreator

# 加载菜单数据
菜单加载器 = TextLoader("餐厅菜单.txt")

# 创建索引
索引 = VectorstoreIndexCreator().from_loaders([菜单加载器])

# 根据用户偏好查询菜单
查询 = "有什么含海鲜但不辣的菜品推荐?"
结果 = 索引.query(查询, llm=语言模型)
print(f"推荐菜品: {结果}")

3. 自定义工具链

from langchain.tools import BaseTool
from typing import Optional, Type

# 自定义过滤工具
class 膳食过滤工具(BaseTool):
    name = "餐饮过滤"
    description = "根据过敏原和饮食限制过滤食物选择"
    
    def _run(self, 查询: str, 过敏原: Optional[list] = None) -> str:
        菜品列表 = ["宫保鸡丁", "糖醋排骨", "麻婆豆腐", "水煮鱼", "佛跳墙"]
        禁忌食材 = 过敏原 or []
        
        结果 = []
        for 菜 in 菜品列表:
            if not any(禁忌 in 菜 for 禁忌 in 禁忌食材):
                结果.append(菜)
        
        return f"适合你的选择: {', '.join(结果)}"

# 使用工具
饮食过滤 = 膳食过滤工具()
结果 = 饮食过滤._run("推荐", 过敏原=["豆腐", "鱼"])
print(结果)

在这里插入图片描述

常见任务示例

1. 创建餐厅推荐助手

# 创建完整的餐厅推荐系统
from langchain.agents import Tool
from langchain.agents import AgentExecutor, AgentOutputParser
from langchain.agents.agent_types import AgentType
from langchain.chains import RetrievalQA
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings

# 定义知识库
餐厅数据 = {
    "餐厅列表": ["青椒小馆", "妈妈厨房", "海鲜世界", "素食天地", "烤肉王"],
    "菜系": {"青椒小馆": "川菜", "妈妈厨房": "家常菜", "海鲜世界": "海鲜", "素食天地": "素食", "烤肉王": "烤肉"},
    "价格": {"青椒小馆": "中等", "妈妈厨房": "实惠", "海鲜世界": "高端", "素食天地": "中等", "烤肉王": "高端"}
}

# 创建向量存储
文档列表 = [f"{餐厅}: {菜系}, 价格:{价格}" for 餐厅, 菜系 in 餐厅数据["菜系"].items() 
            for 价格 in [餐厅数据["价格"][餐厅]]]
嵌入 = OpenAIEmbeddings()
向量存储 = Chroma.from_texts(文档列表, 嵌入)

# 设置检索工具
检索工具 = RetrievalQA.from_chain_type(
    llm=语言模型,
    chain_type="stuff",
    retriever=向量存储.as_retriever()
)

# 定义工具集
工具集 = [
    Tool(
        name="餐厅搜索",
        func=检索工具.run,
        description="根据用户偏好查找合适的餐厅"
    )
]

# 创建代理
菜单推荐代理 = initialize_agent(
    tools=工具集,
    llm=语言模型,
    agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
    verbose=True
)

# 执行推荐
推荐 = 菜单推荐代理.run("我想吃便宜的家常菜,有推荐吗?")
print(推荐)

2. 构建多步菜单过滤器

from langchain.chains import SequentialChain
from langchain.output_parsers import ResponseSchema, StructuredOutputParser

# 定义输出格式
输出字段 = [
    ResponseSchema(name="菜品名称", description="推荐的菜品名称列表"),
    ResponseSchema(name="口味特点", description="每个菜品的口味描述"),
    ResponseSchema(name="价格区间", description="菜品的价格区间")
]
输出解析器 = StructuredOutputParser.from_response_schemas(输出字段)

# 步骤1: 分析用户偏好
偏好模板 = PromptTemplate(
    input_variables=["用户输入"],
    template="分析用户的饮食偏好:\n{用户输入}\n提取关键词如辣度、味型、食材偏好等"
)
偏好分析链 = LLMChain(llm=语言模型, prompt=偏好模板, output_key="偏好分析")

# 步骤2: 菜品筛选
筛选模板 = PromptTemplate(
    input_variables=["偏好分析"],
    template="根据以下偏好,推荐3-5道适合的菜品:\n{偏好分析}\n" + 输出解析器.get_format_instructions()
)
菜品筛选链 = LLMChain(llm=语言模型, prompt=筛选模板, output_key="菜品推荐")

# 组合多步链条
菜单推荐链 = SequentialChain(
    chains=[偏好分析链, 菜品筛选链],
    input_variables=["用户输入"],
    output_variables=["偏好分析", "菜品推荐"],
    verbose=True
)

# 执行推荐流程
结果 = 菜单推荐链({"用户输入": "我想吃不太辣但是有点麻的菜,最好有牛肉,价格适中"})
菜单 = 输出解析器.parse(结果["菜品推荐"])
print(菜单)

Generated Image

注意事项

  1. API密钥管理要小心,用环境变量存储更安全
  2. 链式调用会增加Token消耗,注意成本控制
  3. 提示词设计很关键,直接影响推荐质量
  4. 记得缓存常用查询,能省不少钱呢
  5. 考虑不同餐饮口味偏好的地域差异

总结

LangChain库是构建智能推荐系统的强大工具,可以帮你:

  • 链式处理复杂逻辑
  • 记忆用户对话历史
  • 检索外部知识库
  • 自定义专属工具 掌握了LangChain,就能打造一个既懂你口味又能不断学习的私人美食顾问!老实说,调试过程挺折腾人的,但看到它最后能精准推荐那一刻,真香!

如何零基础入门 / 学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

全套AGI大模型学习大纲+路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

read-normal-img

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

img

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值