Python特征生成的两大方式

本文介绍了特征生成在机器学习中的重要性,特别是Python中的自动化特征生成工具FeatureTools。内容涵盖特征生成的作用,包括增加特征表达能力和模型可解释性,并详细讲解了聚合和转换两种方法。此外,还讨论了FeatureTools的使用,如特征基元、实体和Entityset,以及可能遇到的内存溢出和特征维度爆炸问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

创造新的特征是一件十分困难的事情,需要丰富的专业知识和大量的时间。机器学习应用的本质基本上就是特征工程。

                                                                                                                                                                                ——Andrew Ng

业内常说数据决定了模型效果上限,而机器学习算法是通过数据特征做出预测的,好的特征可以显著地提升模型效果。这意味着通过特征生成(即从数据设计加工出模型可用特征),是特征工程相当关键的一步。 本文从特征生成作用、特征生成的方法(人工设计、自动化特征生成)展开阐述并附上代码。

1 特征生成的作用

特征生成是特征提取中的重要一步,作用在于:

  • 增加特征的表达能力,提升模型效果;(如体重除以身高就是表达健康情况的重要特征,而单纯看身高或体重对健康情况表达就有限。)
  • 可以融入业务上的理解设计特征,增加模型的可解释性;

很多人学习python,不知道从何学起。
很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手。
很多已经做案例的人,却不知道如何去学习更加高深的知识。
那么针对这三类人,我给大家提供一个好的学习平台,免费领取视频教程,电子书籍,以及课程的源代码!
QQ群:609616831


2 数据情况分析

本文示例的数据集是客户的资金变动情况,如下数据字典:

cust_no:客户编号;I1 :性别;I2:年龄 ;E1:开户日期;  
B6 :近期转账日期;C1 (后缀_fir表示上个月):存款;C2:存款产品数; 
X1:理财存款; X2:结构性存款;  label:资金情况上升下降情况。

 这里安利一个超实用Python库,可以一键数据分析(数据概况、缺失、相关性、异常值等等),方便结合数据分析报告做特征生成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值