- 博客(2)
- 收藏
- 关注
原创 本地大模型实现长期记忆--让AI记住你的喜好(基于Langchain)
通过langchain的方法可以实现模型的长期记忆,将对话历史向量化后保存在本地,以下是脚本。脚本会自动生成向量化后的记忆文件。
2025-02-23 11:08:05
374
原创 本地部署DeepSeek与Llama3,基于Langchain和Ollama实现本地双模型的交互对话
1.创建三个python脚本,‘llm1.py’载入deepseek模型,‘llm2.py’载入llama3模型,‘main.py’用来同步运行前两个脚本。访问ollama官网https://ollama.com/,下载OllamaSetup.exe并安装,ollama会默认添加到环境变量中。2.在目录中创建‘llm1输出.txt’和‘llm2输出.txt’用来实现两个模型之间的对话读取,创建'log.txt'记录对话。为了获得更快的速度,可以安装cuda,让模型在GPU上运行。
2025-02-21 16:35:35
443
1
本地部署Deepseek与Lama3,基于Langchain和Ollama实现本地双模型的交互对话
2025-02-21
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人