Python将头像照片转换为漫画,采用GAN深度学习,无噪点

本文介绍了一种使用GAN(生成对抗网络)将头像照片转化为漫画的方法,通过不断学习图像对,捕获关键特征并减少噪点,以达到更好的转化效果。示例展示了使用White-box Cartoon GAN的生成过程,最终实现了高质量的漫画化转换。
摘要由CSDN通过智能技术生成

传统的照片转漫画,使用边缘检测、双边滤波器和降采样,得到图像如下,可以看到,噪点很多,有些关键线条也没有展现出来。

本次采用GAN,GAN网络使用的方法是根据图像对去不断地学习,如输入图像1和对应已有的漫画B,GAN网络从图片1中获取关键特征,不停地生成一张图像C,当C与B的差值很小时停止,当有很多这样地图像对时,我们就有了一个模型。输入一张图像,就可以生成一张对应地漫画图像,我这次使用的GAN(White-box Cartoon)生成。生成效果:
在这里插入图片描述
在这里插入图片描述
完整程序代码:

import os
import cv2
import torch
import numpy as np
import torch.nn as nn

class ResBlock(nn.Module):
    def __init__(self, num_channel):
        super(ResBlock, self).__init__()
        self.conv_layer = nn.Sequential(
            nn.Conv2d(num_channel, num_channel, 3, 1, 1),
            nn.BatchNorm2d(num_channel),
            nn.ReLU(inplace=True),
            nn.Conv2d(num_channel, num_channel, 3, 1, 1),
            nn.BatchNorm2d(num_channel))
        self.activation = nn.ReLU(inplace=True)

    def forward(self, inputs):
        output = self.conv_layer(inputs)
        output = self.activation(output + inputs)
        return output


class DownBlock
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值