python 搜索二维矩阵

编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性:

  • 每行的元素从左到右升序排列。
  • 每列的元素从上到下升序排列。
    在这里插入图片描述
    输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 5
    输出:true
    在这里插入图片描述
    输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 20
    输出:false
class Solution:
    def searchMatrix(self, matrix: List[List[int]], target: int) -> bool:
        columns, rows = len
### 如何在Python中创建二维数组或矩阵Python 中,可以通过多种方式来构建二维数组或矩阵。以下是几种常见的方法: #### 方法一:使用嵌套列表 最简单的方式是通过嵌套列表(List of Lists)来表示二维数组。 ```python matrix = [ [1, 2, 3], [4, 5, 6], [7, 8, 9] ] print(matrix) ``` 这种方法的优点在于其简洁性和易读性,但它并不适合大规模数值运算[^4]。 --- #### 方法二:使用 NumPy 库 NumPy 提供了一个强大的 `ndarray` 数据结构,专门用于处理多维数组和矩阵操作。这是科学计算中最常用的方法之一。 ##### 1. 使用 `numpy.array()` 构造二维数组 可以直接传入一个嵌套列表给 `numpy.array()` 函数,从而将其转换为 NumPy 数组。 ```python import numpy as np matrix = np.array([ [1, 2, 3], [4, 5, 6], [7, 8, 9] ]) print(matrix) ``` ##### 2. 使用 `numpy.zeros()` 或 `numpy.ones()` 初始化特定大小的二维数组 如果需要预先定义一个全零或者全一的二维数组,可以使用这两个函数。 ```python zeros_matrix = np.zeros((3, 3)) # 创建一个 3x3 的全零矩阵 ones_matrix = np.ones((2, 4)) # 创建一个 2x4 的全一矩阵 print(zeros_matrix) print(ones_matrix) ``` ##### 3. 使用 `numpy.eye()` 或 `numpy.diag()` 创建单位矩阵或对角矩阵 - `numpy.eye(N)` 可以用来生成 N×N 大小的单位矩阵。 - `numpy.diag(diagonal_elements)` 则可以根据指定的对角线元素生成对角矩阵。 ```python identity_matrix = np.eye(3) # 单位矩阵 (3x3) diagonal_matrix = np.diag([1, 2, 3]) # 对角矩阵 print(identity_matrix) print(diagonal_matrix) ``` 运行结果如下: ``` [[1. 0. 0.] [0. 1. 0.] [0. 0. 1.]] [[1 0 0] [0 2 0] [0 0 3]] ``` --- #### 方法三:动态填充二维数组 有时我们需要根据某些条件动态地填充二维数组的内容。下面是一个简单的例子,展示如何基于索引来设置值。 ```python rows, cols = 3, 4 dynamic_matrix = np.empty((rows, cols)) for i in range(rows): for j in range(cols): dynamic_matrix[i][j] = i * j print(dynamic_matrix) ``` --- #### 方法四:从文件或其他数据源加载二维数组 实际应用中,可能需要从外部文件(如 CSV 文件)导入数据并转化为二维数组形式。这时可以借助 Pandas 和 NumPy 来完成这一过程。 ```python import pandas as pd import numpy as np dataframe = pd.read_csv('example.csv') # 假设有一个名为 example.csv 的文件 matrix = dataframe.to_numpy() print(matrix) ``` --- ### 总结 以上介绍了四种主要的方式来创建和初始化二维数组/矩阵。对于初学者来说,推荐优先考虑 **嵌套列表**;而对于更复杂的场景,则建议采用功能强大且高效的 **NumPy ndarray** 结构[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一叶知秋的BLOG

创作不易 请多多关注

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值