dy滑块验证码分析

本文章未经许可禁止转载,禁止任何修改后二次传播,擅自使用本文讲解的技术而导致的任何意外,作者均不负责,若有侵权,请联系作者立即删除!

案例地址

aHR0cHM6Ly93d3cuZG91eWluLmNvbS92aWRlby83MzU2OTI3NzYxOTQxOTI1MTIw

首先插装打印日志,我是这样插装的

然后等待日志打印,日志打印完成最后一条就是参数生成的地方

我们如果想知道这个参数是怎么生成的,那我们就要去上面找,我们可以看到这上面有个大数组

我们要想知道大数组转成我们最终的参数是怎么转换的,我们就得在生成大数组的地方断住,然后逐步分析

一步一步走,走到这个函数,一目了然这个函数就是先把这个数组的每个数字先通过Unicode转成字符,然后在window.btoa解码生成最终我们需要的参数值

这个时候我们再去分析那个大数组是怎么来的,继续向上找,断点,可以看出来他是把m里面的值给拿过来的直接然后就是拼接,从右边的作用域也能看出来,是把三个数组拼接起来的,那么我们就得把m也打印放在一起分析了,[116,99,6,16,0,0]是第一个数组,是不变的,然后再加上9和7的数组组成的,那么我们就只要分析9,7数组是怎么来的就行

这里就不一步一步分析了,你们可以自己去尝试分析一下,给大家看一下最终效果,通过没什么问题

目前是3.5.48版本,滑块的图标也更改了,用OpenCV就可以识别

Python滑块是指使用Python编程语言实现对滑块验证码的自动化处理。 滑块验证码通常出现在用户登录、注册等场景中,用于验证用户的真实性。由于滑块验证码需要用户手动滑动滑块,以模拟人类的行为,所以对于大规模的操作或需要频繁验证的场景来说,手动处理滑块验证码非常麻烦且效率低下。 Python滑块解决方案可以通过某些开源的Python库和工具来实现自动滑动滑块,其中常用的是selenium和PIL(Python Imaging Library)库。使用selenium库可以模拟浏览器的操作,包括打开网页、填写表单和点击元素等,而PIL库则提供了图像处理的功能。 实现滑块验证码的自动处理步骤大致如下: 1. 使用selenium库打开包含滑块验证码登录或注册页面; 2. 使用selenium库获取滑块验证码的背景图和滑块图,并下载保存; 3. 使用PIL库读取保存的背景图和滑块图,并对其进行图像处理,如灰度化、二值化等; 4. 使用图像处理技术找到滑块图在背景图上的位置,得到滑块需要滑动的距离; 5. 使用selenium库模拟鼠标拖动滑块,滑动距离即为上一步得到的距离; 6. 使用selenium库模拟点击登录或注册按钮,完成操作。 通过以上步骤,可以实现对滑块验证码的自动化处理,提高效率和便捷性。同时需要注意的是,为了避免被识别为机器行为,可以加入一些随机因素,如模拟人的操作速度和滑动轨迹等,以增加自动化处理的真实性。
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值