网上看了这篇文章后还是感觉有些地方有点小错误,红色字是博主写的
求字符串的循环最小表示:
上面说的两个字符串同构的,并没有直接先求出Min(s),而是通过指针移动,当某次匹配串长时,那个位置就是Min(s)。而这里的问题就是:不是给定两个串,而是给出一个串,求它的Min(s),eg:Min(“babba”) = 4。那么由于这里并非要求两个串的同构,而是直接求它的最小表示,由于源串和目标串相同,所以处理起来既容易又需要有一些变化:我们仍然设置两个指针,i, j,其中i指向0,j指向1,仍然采用上面的滑动方式:
(1) 利用两个指针i, j。初始化时i指向0, j指向1。
(2) k = 0开始,检验s[i+k] 与 s[j+k] 对应的字符是否相等,如果相等则k++,一直下去,直到找到第一个不同,(若k试了一个字符串的长度也没找到不同,则那个位置就是最小表示位置,算法终止并返回)。则该过程中,s[i+k] 与 s[j+k]的大小关系,有三种情况:
证明的时候假设(i<j)的,无伤大雅 ;
(A). s[i+k] > s[j+k],则i滑动到i+k+1处 — 即s1[i->i+k]不会是该循环字符串的“最小表示”的前缀。
证明如下
(B). s[i+k] < s[j+k],则j滑动到j+k+1处,原因同上。
证明如下
(C). s[i+k] = s[j+k],则 k++; if (k == len) 返回结果。
注:这里滑动方式有个小细节,若滑动后i == j,将正在变化的那个指针再+1。直到p1、p2把整个字符串都检验完毕,返回两者中小于 len 的值。
(3) 如果 k == len, 则返回i与j中的最小值
如果 i >= len 则返回j
如果 j >= len 则返回i
如果看了上一篇文章 很容易对这里的i,j 产生误会 误以为i为ans,j为比较指针
实际上这题中 i,j 都可能存有ans 两者互相更新,直到有一个更新后超过了len(包括len) 的时候 另一个即为正解
(4) 进一步的优化,例如:i要移到i+k+1时,如果i+k+1 <= p2的话,可以直接把i移到 j+1,因为,j到j+k已经检验过了该前缀比以i到i+k之间任何一个位前缀都小;j时的类似,移动到i+1。
这个优化就无需解释了
至此,求一个字符串的循环最小表示在O(n)时间实现,感谢大牛的论文。其中实现时的小细节“如果滑动后p1 == p2,将正在变化的那个指针再+1”,开始没有考虑,害得我想了几个小时都觉得无法进行正确的移动。具体例题有两个:http://acm.zju.edu.cn 的2006和1729题。一个是10000规模一个是100000规模。运行时间前者是0S,后者是0.05S。
-
int MinimumRepresentation(int *s, int l)
-
{
-
int i,j,k;
-
i=
0;j=
1;k=
0;
-
while(i<l&&j<l)
-
{
-
k=
0;
-
while(s[i+k]==s[j+k]&&k<l) k++;
-
if(k==l)
return i;
-
if(s[i+k]>s[j+k])
-
if(i+k+
1>j) i=i+k+
1;
-
else i=j+
1;
-
else
if(j+k+
1>i) j=j+k+
1;
-
else j=i+
1;
-
}
-
if(i<l)
return i;
-
else
return j;
-
}
之前被原来的博主的错误代码误导了,改了好久才发现。。。
更改的代码:
int min_rep(){//用最小表示法求字符串S的最小字典序,返回字典序最小的串的首字母位置
int i = 1,j = 0,k = 0;
while(i < n && j < n){//由于循环性,所以是str[(i+k)%n],要对n取模,保证不超过,变成循环的
//也可也将原来的字符串*2
k = 0;
while(str[(i+k) % n] == str[(j+k) % n] && k < n){//直到第一个不相等的位置
++k;
}
if(k == n){
return i < j?i :j;// 返回两者的较少值,而不是就是i
//return min(i,j);
//return i;//这是错误的
}
if(str[(i+k) % n] > str[(j+k) % n]){
/*
if(i +k +1 > j){
i = i+k+1;
}else{
i = j+1;
}*/
i = max(i+k+1 ,j + 1);//可以这样代替,简洁的写法.
}else{
/*
if(j+k+1 > i){
j = j+k+1;
}else{
j = i+1;
}*/
j = max(j+k+1, i+1);
}
}
//return i < j? i :j;
return min(i,j);
}