字符串的最小表示法:
对于一个字符串S,求S的循环的同构字符串S’中字典序最小的一个。
比如字符串“babaa" 字符串的循环同构串有:"babaa","abaab","baaba","aabab","ababa"
其中最小的一个就是字符串最小表示法:即"aabab".
对于字符串循环同构的最小表示法,其问题实质是求S串的一个位置,从这个位置开始循环输出一个长度为strlen(s)的字符串,得到的S’字典序最小。
朴素算法:
令i=0,j=1
如果S[i] > S[j] i=j, j=i+1
如果S[i] < S[j] j++
如果S[i]==S[j] 设指针k,分别从i和j位置向下比较,直到S[i] != S[j]
如果S[i+k] > S[j+k] i=j,j=i+1
否则j++
返回i
时间复杂度O(n^2),对于问题规模稍微大一点就可能TLE。
如果S[i] > S[j] i=j, j=i+1
如果S[i] < S[j] j++
如果S[i]==S[j] 设指针k,分别从i和j位置向下比较,直到S[i] != S[j]
如果S[i+k] > S[j+k] i=j,j=i+1
否则j++
返回i
时间复杂度O(n^2),对于问题规模稍微大一点就可能TLE。
最小表示法O(n)算法:
令i=0,j=1,k=0;
s[i+k] 与 s[j+k] 对应的字符是否相等
如果相等则k++,一直下去,直到找到第一个不同,
(若k试了一个字符串的长度也没找到不同,则那个位置就是最小表示位置,算法终止并返回)。
则该过程中,s[p1+k] 与 s[p2+k]的大小关系,有三种情况:
(1) s[i+k] > s[j+k],令i=+k+1 --- 即s[i->i+k]不会是该循环字符串的“最小表示”的前缀。
(2) s[j+k] < s[j+k],令j=j+k+1,原因同上。
(3) s[i+k] == s[j+k],则 k++; if (k == len) 返回结果。
注:这里滑动方式有个小细节,若滑动后i == j,将正在变化的那个指针再+1。直到i或者j把整个字符串都检验完毕,返回两者中小于 len 的值。
如果 k == len, 则返回i与j中的最小值:
如果 i >= len 则返回j;
如果 j >= len 则返回i;
如果 j >= len 则返回i;
算法还有个小优化:
例如:i要移到i+k+1时,如果i+k+1 <= j的话,可以直接把i移到 j+1,因为,j到j+k已经检验过了该前缀比以i到i+k之间任何一个位前缀都小;
同理,j要移到j+k+1时,情况类似,把j移动到i+1。
模板:
#include<iostream>
#include<cstring>
using namespace std;
int MinimumRepresentation(char *s)
{
int i = 0, j = 1, k = 0, l=strlen(s);
while (i < l && j < l && k < l)
{
int li, lj;
li = (i + k) >= l ? i + k - l : i + k;
lj = (j + k) >= l ? j + k - l : j + k;
if (s[li]==s[lj])
{
k++;
}
else
{
if (s[li]>s[lj])
{
i = i + k + 1;
}
else
{
j = j + k + 1;
}
if (i == j)
{
j++;
}
k = 0;
}
}
return i < j ? i : j;
}