Silver Cow Party -(两次Dijikstra)- POJ 3268

本文介绍了一种利用迪杰斯特拉算法解决从终点到起点的最短路径问题的方法。首先从终点出发,使用迪杰斯特拉算法求出返回所有点的最短路径。然后将路径反转,再次使用迪杰斯特拉算法,巧妙地转化为从起点到终点的最短路径问题。
摘要由CSDN通过智能技术生成

思路:
第一次从终点X使用迪杰斯特拉,求出从终点X返回 所有点的 最短路。然后求各个点到X的最短路时,将路径反转,转化为从X到其他的点的最短路。两次使用迪杰斯特拉,与次小生成树那道题有异曲同工之妙。

AC code:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define INF 1e8
using namespace std;
const int maxn = 1000 + 10;
int vis[maxn];
int d[maxn],d1[maxn];
int map[maxn][maxn];
int n = 0,m = 0,x = 0;
void dijikstra(int s){
    d[s] = 0;
    while(true){
        int v = -1;
        for(int i = 1;i <= n;++i){
            if(vis[i] == false && (v == -1 || d[i] < d[v])){
                v = i;
            }
        }
        if(v == -1){
            break;
        }
        vis[v] = true;

        for(int i = 1;i <= n;++i){
            if(vis[i] == false && (d[v] + map[v][i]) < d[i]){
                d[i] = d[v] + map[v][i];
            }
        }
    }
}
void init(){
    fill(d,d+maxn,INF);
    fill(vis,vis+maxn,false);
    fill(map[0],map[0]+maxn*maxn,INF);
}
void traverse(){//路径反转 
    for(int i = 1;i <= n;++i){
        for(int j = i+1;j <= n;++j){//j不能从1开始,否则反转两次,相当于没变化 
            swap(map[i][j],map[j][i]);
        }
    }
}
int main(){
    scanf("%d %d %d",&n,&m,&x);
    init();
    for(int i = 0;i < m;++i){
        int a = 0,b = 0,w = 0;
        scanf("%d %d %d",&a,&b,&w);
        map[a][b] = w;
    }
    dijikstra(x);
    for(int j = 1;j <= n;++j){//储存第一次的运算结果,并且还原d,vis数组 
        d1[j] = d[j];
        d[j] = INF;
        vis[j] = false;
    }
    traverse();
    dijikstra(x);
    int maxv = 0;
    for(int j = 1;j <= n;++j){
        if(d[j] + d1[j] > maxv){
            maxv = d[j] + d1[j];
        }
    }
    printf("%d\n",maxv);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值