Deferred Object In Twisted

Twisted uses the Deferred object to manage the callback sequence. The client application attaches a series of functions to the deferred to be called in order when the results of the asychronous request are available(this series of functions is known as a series of callbacks, or a callback chain), together with a series of functions to be called if there is an error in the asychronous request(known as a series of errbacks or an errback chain). The asychronous library code calls the first callback when the result is available, or the first errback when an error occurs, and the Deferred object then hands the results of each callback or errback function to the next function in the chain.
  
The Problem that Deferreds Solve
It is the second class of concurrency problem - non-computationally intensive tasks that involve an appreciable delay - that Deferreds are designed to help solve. Functions that wait on hard drive access, database access, and network access all fall into this class, although the time delay varies.
Deferreds are designed to enable Twisted programs to wait for data without hanging until that data arrives. They do this by giving a simple management interface for callbacks to libraries and applications. Libraries know that they always make their results available by calling Deferred.callback and error by calling Deferred.errback. Applications set up result handlers by attaching callbacks and errbacks to deferreds in the order they want them called.

The basic idea behind Deferreds, and other solutions to this problem, is to keep the CPU as active as possible. If one task is waiting on data, rather than have the CPU(and the program!) idle waiting for that data(a process normally called "blocking"), the program performs other operations in the meantime, and waits for some singnal that data is ready to be processed before returning to that process.
In Twisted, a function signals to the calling function that it is waiting by returning a Deferred. When the data is available, the program activeates the callbacks on that Deferred to process the data.

Deferreds - a signal that data is yet to come
In our email sending example above, a parent functions calls a function to connect to the remote server. Asynchrony requires that this connection function return without waiting for the result so that the parent function can do other things. So how does the parent function or its controlling program know that the connection doesn't exist yet, and how does it use the connection once it does exist?
Twisted has an object that signals this situation. When the connection function returns, it signals that the operation is imcomplete by returning a twisted.internet.defer.Deferred object.
The Deferred has two purposes. The first is that it says "I am a signal that the result of whatever you wanted me to do is still pending.". The second is that you can ask the Deferred to run things when the data does arrive.

Callbacks
The way you tell a Deferred what to do with the data once it arrives is by adding a callback - asking the Deferred to call a function once the data arrives.
One Twisted library function that returns a Deferred is twisted.web.client.getPage. In this example, we call getPage, which returns a Deferred, and we attach a callback to handle the contents of the page once the data is available:
from twisted.web.client import getPage
from twisted.internet import reactor

def printContents(contents):
  '''
  This is the 'callback' function, added to the Deferred and called by it when the promised data is available
 '''
 print "The Deferred has called printContents with the following contents:"
 print contents
 
 #Stop the Twisted event handling system -- this is usually handled
 #in higher lever ways
 reactor.stop()
 
#call getPage, which returns immediately with a Deferred, promissing to
#pass the page contents onto our callbacks when the contents are available
deferred = getPage('http://www.google.com')

#added a callback to the deferred -- request that it run printContents when
#the page content has been downloaded
deferred.addCallback(printContents)

#Begin the Twisted event handling system to manage the process -- again
# this isn't the usual way to do this
reactor.run()


 

A very common use of Deferreds is to attach two callbacks. The result of the first callback is passed to the second callback:

from twisted.web.client import getPage
from twisted.internet import reactor

def lowerCaseContents(contents):
 '''
 This is a 'callback' function, added to the Deferred and called by
 it when the promised data is available. It converts all the data to lower case.
 '''
 return contents.lower()
 
def printContents(contents):
 '''
 This a 'callback' function, added to the Deferred after lowerCaseContents
 and called by it with the results of lowerCaseContents
 '''
 print contents
 reactor.stop()
 
deferred = getPage('http://www.google.com')

#add two callbacks to the deferred -- request that it run lowerCaseContents
#when the page content has been downloaded, and then run printContents with
#the result of lowerCaseContents
deferred.addCallback(lowerCaseContents)
deferred.addCallback(printContents)

reactor.run()

Error handling: errbacks
Just as a asynchronous function returns before its result is available, it may also return before it is possible to detect errors: failed connections, erroneous data, protocol errors, and so on. Just as you can add callbacks to a Deferred which it calls when the data you are expecting is available, you can add error handlers(errbacks) to a Deferred for it to call when an error occurs and it cannot obtain the data:

from twisted.web.client import getPage
from twisted.internet import reactor

def errorHandler(err):
 '''
 This is an 'errback' function, added to the Deferred which will call it in the event of an error
 '''
 
 #this isn't a very effective handling of the error, we just print it out:
 print "An error has occurred: <%s>" % str(err)
 #and then we stop the entire process:
 reactor.stop()
 
def printContents(contents):
 '''
 This is a 'callback' function, added to the Deferred and called by it which the page content
 '''
 print contents
 reactor.stop()
 
#we request a page which doesn't exist in order to demonstrate the
#error chain
deferred = getPage("http://www.google.com/does-not-exits")

#add the callback to the Deferred to handle the page content
deferred.addCallback(printContents)

#add the errback to the Deferred to handle any errors
deferred.addErrback(errorHandler)

reactor.run()

内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值