九度OJ 题目1074:对称平方数
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:478 解决:153
题目描述:
打印所有不超过n(n<256)的,其平方具有对称性质的数。
如11*11=121
输入:
无任何输入数据
输出:
输出具有题目要求的性质的数。如果输出数据不止一组,各组数据之间以回车隔开。
九度OJ 题目1075:斐波那契数列
时间限制:5 秒 内存限制:32 兆 特殊判题:否 提交:344 解决:179
题目描述:
编写一个求斐波那契数列的递归函数,输入n值,使用该递归函数,输出如样例输出的斐波那契数列。
输入:
一个整型数n
输出:
题目可能有多组不同的测试数据,对于每组输入数据,
按题目的要求输出相应的斐波那契图形。
样例输入:
6
样例输出:
0
0 1 1
0 1 1 2 3
0 1 1 2 3 5 8
0 1 1 2 3 5 8 13 21
0 1 1 2 3 5 8 13 21 34 55
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:478 解决:153
题目描述:
打印所有不超过n(n<256)的,其平方具有对称性质的数。
如11*11=121
输入:
无任何输入数据
输出:
输出具有题目要求的性质的数。如果输出数据不止一组,各组数据之间以回车隔开。
//清华2002:题目1074:对称平方数
//打印所有不超过n(n<256)的,其平方具有对称性质的数。
#include "StdAfx.h"
#include <iostream>
using namespace std;
bool judge( int x ){
int a[5], i, j, k, y=0;
int temp = x;
for( i=0; temp>0; i++ ){
a[i] = temp % 10;
temp /= 10;
}
i--; //i记录了a[]的最大下标
bool pass = 1;
//方法1:
//for( j=0; j<=(i-1)/2; j++ ){
// if( a[j]!=a[i-j] ){
// pass = 0;
// break;
// }
//}
//方法2: 彻底翻转原数字
for( j=0; j<=i; j++ )
for( k=0; k<i-j; k++ )
a[j] *= 10;
for( j=0; j<=i; j++ )
y += a[j];
//cout << y << " " << x << endl;
if( x != y )
pass =0;
return pass;
};
int main()
{
int i;
for( i=0; i<=3; i++ )
cout << i << endl;
for( i=4; i<256; i++ )
if( judge(i*i) )
cout << i << endl;
system("pause");
return 0;
}
九度OJ 题目1075:斐波那契数列
时间限制:5 秒 内存限制:32 兆 特殊判题:否 提交:344 解决:179
题目描述:
编写一个求斐波那契数列的递归函数,输入n值,使用该递归函数,输出如样例输出的斐波那契数列。
输入:
一个整型数n
输出:
题目可能有多组不同的测试数据,对于每组输入数据,
按题目的要求输出相应的斐波那契图形。
样例输入:
6
样例输出:
0
0 1 1
0 1 1 2 3
0 1 1 2 3 5 8
0 1 1 2 3 5 8 13 21
0 1 1 2 3 5 8 13 21 34 55