随着科技的发展,技术的革新,AI技术当今已经渗入到各个行业里边,身处其中的产品经理也面临的新的挑战和机遇,下面是笔者整理分享的关于传统的产品经理如何顺应时代发展,成功转换成AI产品经理的相关内容,大家一起往下看。
近年来,随着AI技术的飞速发展,尤其是GPT等大模型爆炸式的闯入公众视野,带给人们一种未来已来的期待感。身处AI2.0时代,传统产品经理也面临着新的挑战和机遇。在本篇及后续文章中,我们将探讨传统产品经理如何成功地转为AI产品经理,以顺应时代的发展趋势。
一、什么是AI产品经理?
AI产品经理:懂得使用AI工具解决问题的产品经理。
AI产品经理也是产品经理,核心职责和底层能力的要求与传统产品经理是一致的。
不管AI技术发展到何种地步,说到底,也只是个用来解决问题的工具而已。
不要神话AI,更不要举着锤子找钉子,四处寻找AI技术的所谓落地场景。
而懂得如何使用AI工具解决问题,或者说成为AI产品经理,会是每一个传统产品经理的必经之路。
二、传统产品经理的机遇
随着AI技术基建部分的进一步成熟,寻找落地场景会逐步成为AI的主战场,而这正是产品经理大展身手的好时机。
产品经理由于长期近距离地观察市场趋势变化和用户行为方式,因此天然对场景与需求有着更敏锐的嗅觉,与其拿着AI新技术四处寻找新的落地场景,不如基于自身较强的产品思维,融入对AI技术的理解,深度挖掘自身垂直领域积累多年的用户需求,带着用户的痛点反过来向AI技术寻找答案,从而找到真实靠谱的落地场景,且空间巨大。
传统产品经理在寻找AI技术落地场景的过程中,有着得天独厚的优势。
三、传统产品经理的挑战
随着AI工具的快速普及,产品经理的外围技能价值会逐渐淡化,那些以文档、原型为核心价值的产品经理,可能面临着价值极速归零的局面。
而产品经理也终将顺势回归其最本质的职能:发现问题、提出问题,并协调整合资源来解决问题。
我个人是从非常初级的产品经理做起,再到负责一个大产品的项目管理,现在有幸跳出了日常基础的工作更多的去看产品的PMF,product strategy…
其实一直以来,产品经理的核心价值都是无法被AI取代的:对趋势的判断、对交互关系的深层洞察,以及人类独有的灵感和审美。
在这个全新的AI2.0时代里,产品经理的核心竞争力貌似发生了巨大变化,但好像从来也没变过。
大浪淘沙,剩者为王。
四、AI产品经理需要哪些“新”能力?
想要用好AI这个好工具,需要新掌握以下能力:
- 了解AI技术的能力边界。
- 了解机器学习、深度学习和大模型的关系和优缺点,熟悉技术名词,理解主流算法的原理和适用场景。
- 了解模型构建的整个流程,以及产品经理如何参与到各个流程节点中,明确各个节点的产出物和职责。
- 拥有评估模型的能力,明确评估标准、评估指标和评估方法。
- 积极发现AI适用的业务场景,并能根据具体情况,选择合适的算法模型。
五、总结
本文粗略的讨论了AI产品经理的概念、传统产品经理在AI浪潮中的机遇和挑战,并简要列举了AI产品经理需要的新能力,在后续的文章中,我会继续进行如下探讨:
- 介绍机器学习、深度学习和大模型的关系、优缺点、适用场景。
- 从机器学习入手,介绍模型构建的详细流程。
- 详细介绍机器学习的分类算法、回归算法、聚类算法。
- 简单介绍常见的深度学习算法。
- 简单介绍大模型的原理和应用。
- 简单介绍模型评估和监控的方法。
程序员为什么要学大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓